The Systems of *Principia Logico-Metaphysica*Second-Order Modal Object Theory Typed Object Theory

Edward N. Zalta

Second-Order Modal Object Theory

Language

Standard Definition:

• Simple Terms:

```
Individual variables and constants: x, y, z, ... a, b, c, ... Relation variables and constants: F^n, G^n, H^n, ... P^n, Q^n, R^n, ... (n \ge 0) [Note: Use p, q, r, ... when n = 0.]
```

• Distinguished unary relation term: *E*!

- 'being concrete'
- Basic formulas (Π^n any *n*-ary relation term, κ any individual term):

$$\Pi^{n} \kappa_{1} \dots \kappa_{n} \quad (\kappa_{1}, \dots, \kappa_{n} \text{ exemplify } \Pi^{n}) \qquad (n \geq 0)$$

$$\kappa_{1} \dots \kappa_{n} \Pi^{1} \quad (\kappa_{1}, \dots, \kappa_{n} \text{ encode } \Pi^{n}) \qquad (n \geq 1)$$

- Complex Formulas: $\neg \varphi$, $\varphi \rightarrow \psi$, $\forall \alpha \varphi$ (α any variable), $\Box \varphi$, $\beta \varphi$ ('Actually φ ')
- Complex Terms:

Descriptions: $\iota\nu\varphi$ (ν any individual variable and $\iota\nu\varphi$ interpreted rigidly) λ -expressions ($n \ge 0$): [$\lambda\nu_1 \dots \nu_n \varphi$] (where the ν_i are distinct individual variables)

BNF (Optional):

Syntactic Categories:

- δ primitive individual constants
- ν individual variables
- Σ^n primitive *n*-ary relation constants $(n \ge 0)$
- Ω^n n-ary relation variables $(n \ge 0)$
- α variables
- κ individual terms
- Π^n *n*-ary relation terms $(n \ge 0)$
- φ formulas
- au terms

$$\delta ::= a_1, a_2, \dots$$

$$\nu ::= x_1, x_2, \dots$$

$$(n \ge 0) \quad \Sigma^n ::= P_1^n, P_2^n, \dots \quad \text{(with } P_1^1 \text{ distinguished and written as } E!)$$

$$(n \ge 0) \quad \Omega^n ::= F_1^n, F_2^n, \dots$$

$$\alpha ::= \nu \mid \Omega^n \ (n \ge 0)$$

$$\kappa ::= \delta \mid \nu \mid \iota \nu \varphi$$

$$(n \ge 1) \quad \Pi^n ::= \Sigma^n \mid \Omega^n \mid [\lambda \nu_1 \dots \nu_n \ \varphi] \quad (\nu_1, \dots, \nu_n \text{ are pairwise distinct)}$$

$$\varphi ::= \Sigma^0 \mid \Omega^0 \mid \Pi^n \kappa_1 \dots \kappa_n \ (n \ge 1) \mid \kappa_1 \dots \kappa_n \Pi^n \ (n \ge 1) \mid$$

$$[\lambda \varphi] \mid (\neg \varphi) \mid (\varphi \to \varphi) \mid \forall \alpha \varphi \mid (\Box \varphi) \mid (\mathcal{A} \varphi)$$

$$\Pi^0 ::= \varphi$$

$$\tau ::= \kappa \mid \Pi^n \ (n \ge 0)$$

Definitions

Operators and Terms

&, \vee , \equiv , \exists , and \diamondsuit are all defined in the usual way

$$O! =_{df} [\lambda x \diamond E!x]$$
 ('being ordinary')

$$A! =_{df} [\lambda x \neg \Diamond E!x]$$
 ('being abstract')

Existence (\downarrow) (defined by cases)

$$x \downarrow \equiv_{df} \exists F F x$$

$$F^{n} \downarrow \equiv_{df} \exists x_{1} \dots \exists x_{n} (x_{1} \dots x_{n} F^{n}) \qquad (n \ge 1)$$

$$p \downarrow \equiv_{df} [\lambda x p] \downarrow$$

Identity (=) (defined by cases)

$$x = y \equiv_{df} (O!x \& O!y \& \Box \forall F(Fx \equiv Fy)) \lor (A!x \& A!y \& \Box \forall F(xF \equiv yF))$$

$$F^{1} = G^{1} \equiv_{df} F^{1} \downarrow \& G^{1} \downarrow \& \Box \forall x(xF^{1} \equiv xG^{1})$$

$$F^{n} = G^{n} \equiv_{df} F^{n} \downarrow \& G^{n} \downarrow \& \qquad (\text{where } n > 1)$$

$$\forall x_{1} \dots \forall x_{n-1} ([\lambda y F^{n}yx_{1} \dots x_{n-1}] = [\lambda y G^{n}yx_{1} \dots x_{n-1}] \& \qquad [\lambda y F^{n}x_{1}yx_{2} \dots x_{n-1}] = [\lambda y G^{n}x_{1}yx_{2} \dots x_{n-1}] \& \dots \& \qquad [\lambda y F^{n}x_{1} \dots x_{n-1}y] = [\lambda y G^{n}x_{1} \dots x_{n-1}y]$$

$$p = q \equiv_{df} p \downarrow \& q \downarrow \& [\lambda y p] = [\lambda y q]$$

Axioms

A *closure* of a formula φ is the result of prefacing any string of quantifiers $\forall \alpha$, necessity operators \Box , or actuality operators A to φ . We take, as axioms, the closures (modal, universal, actualizations) of all (the instances of) the following axioms (axiom schemata), with the exception of the axiom schema $A \varphi \to \varphi$, which we take only the universal closures of the instances:

Axioms for Negations and Conditionals:

- $\varphi \rightarrow (\psi \rightarrow \varphi)$
- $(\varphi \to (\psi \to \chi)) \to ((\varphi \to \psi) \to (\varphi \to \chi))$
- $(\neg \varphi \rightarrow \neg \psi) \rightarrow ((\neg \varphi \rightarrow \psi) \rightarrow \varphi)$

Axioms for Free Logic of Complex Terms:

- $\forall \alpha \varphi \rightarrow (\tau \downarrow \rightarrow \varphi_{\alpha}^{\tau})$, provided τ is substitutable for α in φ
- $\tau\downarrow$, provided τ is primitive constant, a variable, or a λ -expression in which the λ does *not* bind a variable that occurs in encoding position in φ .¹
- $\forall \alpha (\varphi \rightarrow \psi) \rightarrow (\forall \alpha \varphi \rightarrow \forall \alpha \psi)$
- $\varphi \rightarrow \forall \alpha \varphi$, provided α doesn't occur free in φ
- $\Pi^n \kappa_1 \dots \kappa_n \to (\Pi^n \downarrow \& \kappa_1 \downarrow \& \dots \& \kappa_n \downarrow) \quad (n \ge 0)$ $\kappa_1 \dots \kappa_n \Pi^n \to (\Pi^n \downarrow \& \kappa_1 \downarrow \& \dots \& \kappa_n \downarrow) \quad (n \ge 1)$

¹Formally, we may define: a variable α occurs in *encoding position* in φ just in case α is one of the primary terms of an encoding formula that occurs as a subterm of φ . For the definitions of *subterm* and *primary* term, see item (7) of *Principia Logico-Metaphysica*, at https://mally.stanford.edu/principia.pdf.

Axioms for the Substitution of Identicals:

α = β → (φ → φ'), whenever β is substitutable for α in φ, and φ' is the result of replacing zero or more free occurrences of α in φ with occurrences of β

Axioms for Actuality:

- $\mathcal{A}\varphi \to \varphi$ (only universal closures)
- $A \neg \varphi \equiv \neg A \varphi$
- $\mathcal{A}(\varphi \to \psi) \equiv (\mathcal{A}\varphi \to \mathcal{A}\psi)$
- $A \forall \alpha \varphi \equiv \forall \alpha A \varphi$
- $\mathcal{A}\varphi \equiv \mathcal{A}\mathcal{A}\varphi$

Axioms for Necessity:

- $\Box(\varphi \to \psi) \to (\Box \varphi \to \Box \psi)$
- $\Box \varphi \rightarrow \varphi$
- $\Diamond \varphi \to \Box \Diamond \varphi$
- $\Diamond \exists x (E!x \& \neg AE!x)$

Axioms for Necessity and Actuality:

- $\mathcal{A}\varphi \to \Box \mathcal{A}\varphi$
- $\Box \varphi \equiv \mathcal{A} \Box \varphi$

Axioms for Definite Descriptions:

• $y = ix\varphi \equiv \forall x(\mathcal{A}\varphi \equiv x = y)$

Axioms for Relations (λ -Calculus for Relations):

•
$$[\lambda \nu_1 \dots \nu_n \varphi] \downarrow \rightarrow [\lambda \nu_1 \dots \nu_n \varphi] = [\lambda \nu_1 \dots \nu_n \varphi]'$$

 $([\lambda \nu_1 \dots \nu_n \varphi]' \text{ an alphabetic variant})$ $(n \ge 0)$

•
$$[\lambda x_1 \dots x_n \varphi] \downarrow \rightarrow ([\lambda x_1 \dots x_n \varphi] x_1 \dots x_n \equiv \varphi)$$
 $(n \ge 1)$

$$\bullet \ [\lambda x_1 \dots x_n F^n x_1 \dots x_n] = F^n \tag{n \ge 0}$$

•
$$([\lambda x_1 \dots x_n \varphi] \downarrow \& \Box \forall x_1 \dots \forall x_n (\varphi \equiv \psi)) \rightarrow [\lambda x_1 \dots x_n \psi] \downarrow$$
 $(n \ge 1)$

Axioms for Encoding:

•
$$x_1 ... x_n F^n \equiv x_1 [\lambda y F^n y x_2 ... x_n] \& x_2 [\lambda y F^n x_1 y x_3 ... x_n] \& ... \& x_n [\lambda y F^n x_1 ... x_{n-1} y]$$

- $xF \rightarrow \Box xF$
- $O!x \rightarrow \neg \exists F xF$
- $\exists x (A!x \& \forall F(xF \equiv \varphi))$, provided x doesn't occur free in φ

Deductive Systems

Primitive Rule of Inference: Modus Ponens

Derivations and Theoremhood:

- There are two derivability systems: $\Gamma \vdash \varphi$ and $\Gamma \vdash_{\square} \varphi$.
- $\Gamma \vdash \varphi$ (derivations) and $\vdash \varphi$ (theorems) defined in the usual way: these are derivations (theorems) from inferred from *any* axioms.
- $\Gamma \vdash_{\square} \varphi$ (modally strict derivations) and $\vdash_{\square} \varphi$ (modally strict theorems): these are derivations (theorems) that don't depend on the axiom $\mathcal{A}\varphi \to \varphi$.
 - $\mathcal{A}\varphi \rightarrow \varphi$ is a 'modally fragile' axiom and can't be necessitated.
 - We mark non-modally strict derivations and theorems with a \star .
 - The system is therefore set-up for additional axioms whose necessitations aren't asserted.
- Derived Metarule GEN:
 - If Γ $\vdash \varphi$ and α doesn't occur free in any formula in Γ, then Γ $\vdash \forall \alpha \varphi$.
 - If $\Gamma \vdash_{\square} \varphi$ and α doesn't occur free in any formula in Γ , then $\Gamma \vdash_{\square} \forall \alpha \varphi$.
- Derived Metarule RN, where $\Box\Gamma$ is $\{\Box\psi|\psi\in\Gamma\}$:
 - If $\Gamma \vdash_{\sqcap} \varphi$, then $\Box \Gamma \vdash_{\sqcap} \Box \varphi$
 - If Γ ⊢ $_{□}$ φ , then □ Γ ⊢ □ φ
- Derived Metarule RA, where $A\Gamma$ is $\{A\psi | \psi \in \Gamma\}$:
 - If Γ ⊢ φ , then $\mathfrak{A}\Gamma$ ⊢ $\mathfrak{A}\varphi$.
 - If Γ ⊢_□ φ , then $A\Gamma$ ⊢_□ $A\varphi$.

Primitive Metarules for Definitions:

- Primitive Metarule for \equiv_{df} : A definition of the form $\varphi \equiv_{df} \psi$ introduces the closures of formulas of the form $\varphi \to \psi$ and $\psi \to \varphi$ as necessary axioms.
- Primitive Metarule for $=_{df}$: A definition of the form $\tau =_{df} \sigma$ introduces the closures of formulas of the form $(\sigma \downarrow \to \tau = \sigma) \& (\neg \sigma \downarrow \to \neg \tau \downarrow)$ as necessary axioms.

See https://mally.stanford.edu/principia.pdf.

Some Distinctive Theorems Governing Existence and Identity

The principles (theorems) of classical propositional logic and the principles of predicate logic (with a negative free logic for complex terms) are all preserved. But the following \vdash_{\square} theorems governing existence and identity are distinctive – the numbers refer to the numbered items the latest version of *Principia Logico-Metaphysica*, at URL in red noted above.

```
(104.2) \varphi\downarrow
                                                                                                                               (for any formula \varphi)
(106)
                  \tau \downarrow \rightarrow \Box \tau \downarrow
                                                               (logical existence implies necessary logical existence)
(107.1) \tau = \sigma \rightarrow \tau \downarrow
(107.2) \tau = \sigma \rightarrow \sigma \downarrow
(111.2) \quad [\lambda \varphi] \equiv \varphi
                                                                                                                          ("that-\varphi is true iff \varphi")
(117.1) \quad \alpha = \alpha
(117.2) \alpha = \beta \rightarrow \beta = \alpha
(117.3) (\alpha = \beta \& \beta = \gamma) \rightarrow \alpha = \gamma
(121.1) 	 \tau \downarrow \equiv \exists \beta (\beta = \tau)
                                                                                         (provided that \beta doesn't occur free in \tau)
(125.1) \alpha = \beta \rightarrow \Box \alpha = \beta
                                                                                                                          (necessity of identity)
```

Typed Object Theory

(Latest unpublished version)

Language

Types:

- *i* is a type.
- If $t_1, ..., t_n$ are any types $(n \ge 0), \langle t_1, ..., t_n \rangle$ is a type.

BNF:

```
\delta^t primitive constants of type t
\alpha^t variables of type t
\tau^t terms of type t
\varphi formulas
```

Definitions

- (.1) $\varphi \& \psi \equiv_{df} \neg (\varphi \rightarrow \neg \psi)$
- (.2) $\varphi \lor \psi \equiv_{df} \neg \varphi \rightarrow \psi$
- (.3) $\varphi \equiv \psi \equiv_{df} (\varphi \rightarrow \psi) \& (\psi \rightarrow \varphi)$

$$(.4) \exists x \varphi \equiv_{df} \neg \forall x \neg \varphi \qquad x \text{ any type}$$

 $(.5) \diamond \varphi \equiv_{df} \neg \Box \neg \varphi$

$$(.6.a) \ x \downarrow \equiv_{df} \exists F F x$$
 x has type i

$$(.6.b) \ p \downarrow \equiv_{df} \exists F F p$$
 p has type $\langle \rangle$

$$(.6.c) \ F \downarrow \equiv_{df} \exists x_1 \dots \exists x_n (x_1 \dots x_n F)$$
 F has type $t_1, \dots, t_n \ (n \ge 1)$

(.8)
$$A! =_{df} [\lambda x \neg \Diamond E!x]$$
 x has any type

$$(.9) x=y \equiv_{df} (O!x \& O!y \& \Box \forall F(Fx \equiv Fy)) \lor (A!x \& A!y \& \Box \forall F(xF \equiv yF))$$
 x, y have type i

$$(.10) F = G \equiv_{df} (O!F \& O!G \& \Box \forall x (xF \equiv xG)) \lor (A!F \& A!G \& \Box \forall \mathcal{H}(F\mathcal{H} \equiv G\mathcal{H}))$$
 F, G have type $\langle t \rangle$

(.11)
$$F = G \equiv_{df}$$
 F, G have type $\langle t_1, \dots, t_n \rangle$

$$O!F \& O!G \& \forall x_2 \dots \forall x_n([\lambda x_1 Fx_1 \dots x_n] = [\lambda x_1 Gx_1 \dots x_n]) \& \forall x_1 \forall x_3 \dots \forall x_n([\lambda x_2 Fx_1 \dots x_n] = [\lambda x_2 Gx_1 \dots x_n]) \& \dots \& \forall x_1 \dots \forall x_{n-1}([\lambda x_n Fx_1 \dots x_n] = [\lambda x_n Gx_1 \dots x_n]) \lor A!F \& A!G \& \square \forall \mathcal{H}(F\mathcal{H} \equiv G\mathcal{H})$$

$$(.12) p = q \equiv_{df} (O!p \& O!q \& [\lambda x p] = [\lambda x q]) \lor (A!p \& A!q \& \Box \forall \mathcal{H}(p\mathcal{H} \equiv q\mathcal{H}))$$
 p, q have type $\langle \rangle$

Axioms

Negations and Conditionals.

$$(.1) \varphi \rightarrow (\psi \rightarrow \varphi)$$

$$(.2) \ (\varphi \to (\psi \to \chi)) \to ((\varphi \to \psi) \to (\varphi \to \chi))$$

$$(.3) \ (\neg \varphi \to \neg \psi) \to ((\neg \varphi \to \psi) \to \varphi)$$

Quantification and Logical Existence.

(.4)
$$\forall x \varphi \rightarrow (\tau \downarrow \rightarrow \varphi_x^{\tau})$$
, provided τ is substitutable for x in φ x, τ have type t

(.5) $\tau \downarrow$, whenever τ is either a primitive constant, a variable, or a core λ -expression

$$(.6) \ \forall x(\varphi \to \psi) \to (\forall x\varphi \to \forall x\psi)$$
 x any type

(.7)
$$\varphi \to \forall x \varphi$$
, provided *x* doesn't occur free in φ *x* any type

$$\begin{array}{c} \text{(.8)} \ \ \text{(a)} \ \Pi \tau_1 \dots \tau_n \to (\Pi \downarrow \& \tau_1 \downarrow \& \dots \& \tau_n \downarrow) \\ \text{(b)} \ \tau_1 \dots \tau_n \Pi \to (\Pi \downarrow \& \tau_1 \downarrow \& \dots \& \tau_n \downarrow) \end{array} \qquad \qquad (n \geq 0)$$

Substitution of Identicals.

★Actuality (only universal closures).

$$(.10)$$
 $\mathcal{A}\varphi \to \varphi$

Actuality (all closures).

$$(.11) \ \mathcal{A} \neg \varphi \equiv \neg \mathcal{A} \varphi$$

$$(.12) \ \mathcal{A}(\varphi \to \psi) \equiv (\mathcal{A}\varphi \to \mathcal{A}\psi)$$

(.13)
$$A \forall x \varphi \equiv \forall x A \varphi$$
 x any type

$$(.14)$$
 $\mathcal{A}\varphi \equiv \mathcal{A}\mathcal{A}\varphi$

Necessity.

$$(.15) \ \Box(\varphi \to \psi) \to (\Box \varphi \to \Box \psi)$$

$$(.16) \Box \varphi \rightarrow \varphi$$

$$(.17) \Diamond \varphi \rightarrow \Box \Diamond \varphi$$

$$(.18) \diamondsuit \exists x (E!x \& \neg AE!x)$$
 x has type i and $E!$ has type $\langle i \rangle$

Necessity and Actuality.

$$(.19) \ \mathcal{A}\varphi \rightarrow \Box \mathcal{A}\varphi$$

$$(.20) \ \Box \varphi \equiv \mathcal{A} \Box \varphi$$

Descriptions.

$$(.21) \ \ y = ix\varphi \equiv \forall x(\mathcal{A}\varphi \equiv x = y)$$
 x, y have type t

Relations.

$$(.22) \ [\lambda x_1 \dots x_n \varphi] \downarrow \to O! [\lambda x_1 \dots x_n \varphi]$$
 $x_1, \dots, x_n \text{ have types } t_1, \dots, t_n, O! \text{ has type } \langle \langle t_1, \dots, t_n \rangle \rangle$

(.23) $O!\varphi$, provided φ is not in $Base^{\langle \rangle}$, i.e., provided φ is not a constant of type $\langle \rangle$, a variable of type $\langle \rangle$, or a description of type $\langle \rangle$

$$(.24) A!F \rightarrow \neg \exists x_1 \dots \exists x_n F x_1 \dots x_n$$
 x_1, \dots, x_n have types t_1, \dots, t_n

(.25)
$$[\lambda x_1 \dots x_n \varphi] \downarrow \rightarrow [\lambda x_1 \dots x_n \varphi] = [\lambda x_1 \dots x_n \varphi]'$$
 (α -Conversion)

$$(.26) [\lambda x_1 \dots x_n \varphi] \downarrow \to ([\lambda x_1 \dots x_n \varphi] x_1 \dots x_n \equiv \varphi)$$
 (\$\beta\$-Conversion)

$$(.27) O!F \rightarrow ([\lambda x_1 \dots x_n F x_1 \dots x_n] = F)$$
 (η -Conversion)

$$(.28) ([\lambda x_1 \dots x_n \varphi] \downarrow \& \Box \forall x_1 \dots \forall x_n (\varphi \equiv \psi)) \rightarrow [\lambda x_1 \dots x_n \psi] \downarrow \qquad \qquad n \ge 1, x_1, \dots, x_n \text{ any types,}$$

Encoding.

(.29)
$$x_1 ... x_n F \equiv x_1 [\lambda y_1 F y_1 x_2 ... x_n] \& x_2 [\lambda y_2 F x_1 y_2 x_3 ... x_n] \& ... \& x_n [\lambda y_n F x_1 ... x_{n-1} y_n]$$
 (x_i, y_i have the same type)

(.30)
$$xF \rightarrow \Box xF$$
 x any type

(.32)
$$\exists x(A!x \& \forall F(xF \equiv \varphi))$$
, where φ has no free xs