The Systems of Principia Logico-Metaphysica
Second-Order Modal Object Theory

and

Typed Object Theory
Edward N. Zalta

Second-Order Modal Object Theory

Language
Standard Definition:

* Simple Terms:
Individual variables and constants: x,7,z,... a,b,c,...
Relation variables and constants: F",G",H",... P",Q",R",... (n>0)
[Note: Use p,q,7,... when n=0.]

* Distinguished unary relation term: E!

* Basic formulas (IT" any n-ary relation term, « any individual term):

‘being concrete’

Mxy...x, (‘kq,..., %, exemplify IT") (n>0)
Ky... 5,010 (‘kq,..., %, encode IT") (n>1)
* Complex Formulas: —¢, ¢ — ¢, Va@ (a any variable), O¢, de (‘Actually ¢’)
* Complex Terms:
Descriptions: v (v any individual variable and 1v¢ interpreted rigidly)
A-expressions (1> 0): [Avy...v, @] (where the v; are distinct individual variables)

BNF (Optional):
Syntactic Categories:

) primitive individual constants

v individual variables

X" primitive n-ary relation constants (n > 0)
Q" n-ary relation variables (1 > 0)

a variables

K individual terms

IT" n-ary relation terms (n > 0)

@ formulas

T terms
0 = ay,ap,...
V i= X1,X,...

(n>0) X" == P',P},... (with P11 distinguished and written as E!)
(n>0)Q" = F,F,..
axz=v|Q"(n=0)
ku=0|v|we
(m=1)I1" == 3" | Q" | [Avy...v, @] (vq,...,V, are pairwise distinct)
=01 Q% | I"k;...x, (n21) | k1.5, TT" (n21) |
Aol | (=@) [(¢ —=¢) | Vag | (D) | (de)

t= Q@
Tu=x | 1" (n>0)

Definitions
Operators and Terms
&, Vv, =,3d, and ¢ are all defined in the usual way
O! =g4¢ [Ax OE!x] (‘being ordinary’)
Al =4 [Ax=OE!x] (‘being abstract’)
Existence () (defined by cases)
x} =4 JFFx
F'] =g Axy...3x,(x1 ... x, F") (n=1)
pl =4 [Axpll
Identity (=) (defined by cases)
x=y =g (Olx& Oly &OVF(Fx=Fy)) V (Alx&Aly &OYF(xF = yF))
F'=G' =4 F'| & G'| & OVx(xF' =xG')

F'=G" =4 F"| & G"] & (where n > 1)
Vxp... Y, ([Ay F'yxq ... x,1)=[Ay G"yxy...x,q] &
[Ap F'x19x5...x,_1]=[Ay G"x19xp... 0, 1] &... &
[Ay F'xq...x,19]=[Ay G"x; ... x17))

p=9 =i pl &ql &[Ay p]=[1y q]

Axioms

A closure of a formula ¢ is the result of prefacing any string of quantifiers Y«, necessity operators 0O, or
actuality operators A to ¢. We take, as axioms, the closures (modal, universal, actualizations) of all (the
instances of) the following axioms (axiom schemata), with the exception of the axiom schema ddp — ¢,
which we take only the universal closures of the instances:

Axioms for Negations and Conditionals:
c =W —9)
* = @—=x) = (e—=9)—(@—x)
* (=) = (e =) = @)
Axioms for Free Logic of Complex Terms:
* Yap — (1l — ¢f), provided 7 is substitutable for a in ¢

* 7, provided t is primitive constant, a variable, or a A-expression in which the A does not bind a
variable that occurs in encoding position in ¢.!

s Ya(p >) > Yap > Yay)
* @ > Vag, provided a doesn’t occur free in ¢

o IM"kq...x, > (IT"] &K1l & ... &x,l) (n>0)
ki kI > (T &kl & ... &x,l) (n>1)

IFormally, we may define: a variable a occurs in encoding position in ¢ just in case a is one of the primary terms of an encoding
formula that occurs as a subterm of ¢. For the definitions of subterm and primary term, see item (7) of Principia Logico-Metaphysica,
at https://mally.stanford.edu/principia.pdf.

https://mally.stanford.edu/principia.pdf

Axioms for the Substitution of Identicals:

* a=p — (¢ — ¢’'), whenever B is substitutable for a in ¢, and
¢’ is the result of replacing zero or more free occurrences of «

in @ with occurrences of 8
Axioms for Actuality:
* dp — ¢ (only universal closures)
* dop =-dp
* Al —P) = (do — dy)
s dVap =Vade
s do =ddp
Axioms for Necessity:
* O(¢ = ¢) = (0p — OY)
*hp—¢@
e Op - OO
o Odx(Elx & —dlE!lx)
Axioms for Necessity and Actuality:
s do — Ode
s Op =doge
Axioms for Definite Descriptions:
* y=wxp = Vx(dp =x=y)
Axioms for Relations (A-Calculus for Relations):

o [MWivu ol = [Avi v, @]l=[Avy v, @]
([Avq...v, @] an alphabetic variant)

o [Ax1...x, @)l = ([Ax1...x, @lxq ..., = @)

o [Axy...x, F"x1...x,]=F"

o ([Axg...x,]l & OVx .. Vx,(p =) = [Ax...x, P
Axioms for Encoding:

* x1...x,F" =
x1[Ay F'yxp...x,] & X[Ay F'x19x3...%,] & ... & x,[Ay F'x;

e xF — OxF
e O'x » —3dF xF

* dx(Alx & VF(xF = ¢)), provided x doesn’t occur free in ¢

PR

Deductive Systems
Primitive Rule of Inference: Modus Ponens
Derivations and Theoremhood:
* There are two derivability systems: ' + ¢ and I - ¢.

* I' + @ (derivations) and + ¢ (theorems) defined in the usual way: these are derivations (theorems)
from inferred from any axioms.

* I+ @ (modally strict derivations) and + ¢ (modally strict theorems): these are derivations (theo-
rems) that don’t depend on the axiom slp — @.

- dp — @ is a ‘modally fragile’ axiom and can’t be necessitated.
- We mark non-modally strict derivations and theorems with a *.

— The system is therefore set-up for additional axioms whose necessitations aren’t asserted.
* Derived Metarule GEN:

— If T'+ @ and & doesn’t occur free in any formula in I, then I' - Vag.

— IfI' g @ and a doesn’t occur free in any formula in I, then I' - Vag.
* Derived Metarule RN, where 0T is {Oyp |y €T'}:

- IfT'+g @, then OI' Fg O@
- IfI'+tg @, thenOI' + D@

* Derived Metarule RA, where oT is {sdg|p €T}
- IfI'+ ¢, then A - do.
- IfT+g @, then AT 5 .
Primitive Metarules for Definitions:

* Primitive Metarule for =j;: A definition of the form ¢ =4 ¢ introduces the closures of formulas
of the form ¢ — 1 and 1 — @ as necessary axioms.

* Primitive Metarule for =4: A definition of the form 7 =4 o introduces the closures of formulas of
the form (0] —» 1=0) & (—o| — —1l) as necessary axioms.

See https://mally.stanford.edu/principia.pdf.

Some Distinctive Theorems Governing Existence and Identity

The principles (theorems) of classical propositional logic and the principles of predicate logic (with
a negative free logic for complex terms) are all preserved. But the following + theorems governing
existence and identity are distinctive — the numbers refer to the numbered items the latest version of
Principia Logico-Metaphysica, at URL in red noted above.

(104.2) ¢l (for any formula ¢)
(106) | —0otl (logical existence implies necessary logical existence)
(107.1) t=0—>1l

(107.2) t=0—>0l

(111.2) [A@l=e (“that-¢ is true iff ¢”)
(117.1) a=a

(117.2) a=p—p=a

(117.3) (a=p&p=y)—>a=y

(121.1) 7l =3B(B=1) (provided that g doesn’t occur free in 1)
(125.1) a=p—0Oa=p (necessity of identity)

https://mally.stanford.edu/principia.pdf

Typed Object Theory

(Latest unpublished version)

Language
Types:
* iisatype.

o If t4,...,t, are any types (n > 0), (t,...,t,) is a type.

BNF:
o' primitive constants of type t
a' variables of type t
' terms of type t
¢ formulas
6! u=al,a,... (EX! adistinguished constant, for every t)
al n= xl,x
n= X)X,
Base' == o' | a | 1a'e
7 = Base'
(n>1) Tt = Baseti-tn) | [Aa't...afn @] (a'l...a' pairwise distinct)
@ == Base) | oottt (n> 1) | ol gttt (> 1) |
[Ae] | (=) | (p =) | Ya'e | (D) | (dg)
0 =g
Definitions

(-1)
(:2) eV =g ~p -9
(3) p=¢ =z (¢ > P) & (Y — @)
(-4) Ixp =4 ~Vx—@ X any type
(:5) Op =g -O-g
(-6.a) x| =4 IFFx x has type i
(.6.b) pl =4 AFFp p has type ()
(-6.c) Fl =gr Ixy... x,(x1 ... x,F) F has type t1,...,t, (n>1)
(.7) O =4 [AxOE!x] x has any type
(-8) Al =4r [Ax—=OE!x] x has any type
(.9) x=y =4 (Olx& Oly & OVF(Fx = Fy)) V (Alx& Aly & OVF(xF = yF)) x,v have type i
(.10) F=G =4 (O'F & O!G & OYx(xF = xG)) V (AIF & AlG & OVH(FH = GH)) F, G have type (t)
(11) F=G =4 F,G have type (t1,...,t,)
OF&OIG& Vxy...Vx,([Ax1 Fx1...x,]=[Ax1 Gx1...x,]) &
Vx1Vxs... YV, ([Axy Fxp...x,]=[Ax Gxy.o.x,) &... &
Vxp...Vx,_ 1 ([Ax, Fxp...x,]=[Ax, Gx1...x,]) V
AlF& AlG&OVH(FH = GH)
(12) p=q =4 (Olp& Olq& [Ax p]=[Axq]) vV (Alp & Alq & OV H(pH = qH)) p,q have type ()

Axioms
Negations and Conditionals.
(1) ¢—(—9)
(2) (p=@—=x)=(¢—=9)=(p—X)
(:3) (=@ = =) = (=@ =) = ¢)
Quantification and Logical Existence.
(\4) Vxp — (1l — @f), provided Tt is substitutable for x in ¢ x,7 have type t

(.5) 7!, whenever t is either a primitive constant, a variable, or a core A-expression

(:6) Vx(p = ¢) = (Yxp — Vx1) x any type
(.7) @ — Vxg, provided x doesn’t occur free in ¢ X any type
(.8) (a)IIty...7,, » (Il &1l & ... & 7T,,]) (n>0)

b)ty... 7,1 > (I & 17] & ... & 7,,]) (n>=1)

Substitution of Identicals.
(.9) x=y = (¢ > ¢) x,7 have type t
*Actuality (only universal closures).
(.10) sy — @
Actuality (all closures).
(\11) d=ep = —dlp

(:12) (e —) = (dp — dy)

13) AVxp =Vxd X any type
(¢ ¢ y typ
(.14) dAp =dde

Necessity.

(:15) O(e = ¥) = (Op - OY)

(.16) op — ¢

(.17) Op - OC@

(.18) OAx(E!x & —AE!x) x has type i and E! has type (i)
Necessity and Actuality.

(.19) do — ode

(.20) op =doe

Descriptions.

(.21) y=1xp = Vx(dp =x=7) x,v have type ¢

Relations.

(.22) [Axq...x, @]l = Ol[Ax1...x, @] X1,...,X, have types tq,...,t,, Ol has type ({(t{,..., t;))

(.23) O!g, provided ¢ is not in Base!?, i.e., provided ¢ is not a constant of type (), a variable of type (),

or a description of type ()
24) A'F — —=dx;...dx,Fxq...x,

25) [Axp...x, o)l = [Axq...x, @] = [Ax1...x, @]

N

(-
(-
(.26) [Axy...x, @]l = ([Ax...x, @lx1...x, = @)

(.27) O'F - ([Ax1...x,, Fx1...x,] =F)

(.28) ([Ax1...x, el & OVxy...Vx, (@ =) — [Axy...x,]l

Encoding.

=

(29) xl...an Exl[/\yl Fy1x2...xn] &Xz[/\;l)Z FX]})2X3...

(.30) xF — OxF
(.31) O!x —» —-3FxF
(.32) dx(Alx & YF(xF = ¢)), where @ has no free xs

&

X1,...,X, have types tq,...,t,
(a-Conversion)
(B-Conversion)
(r-Conversion)

n>1,xy,...,x, any types,

& xn[/\yn Fxq... xnflyn]
(x;,v; have the same type)

X any type
X any type
X any type

