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In [1884], Frege formulated some ‘abstraction’ principles that imply
the existence of abstract objects in classical logic. The most well-known
of these is:

Hume’s Principle:
The number of F s is identical to the number of Gs iff there is a
one-to-one correspondence between the F s and the Gs.

#F =#G↔ F ≈ G

When added to classical second-order logic (but not free second-order
logic), this implies the existence of numbers, which Frege regarded as
‘logical objects’. He also developed analogous principles for such abstract
objects as directions and shapes:
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Directions:
The direction of line a is identical to the direction of line b iff a is
parallel to b.

�a=�b↔ a‖b
Shapes:
The shape of figure a is identical to the shape of figure b iff a is
(geometrically) similar to b.

ă= b̆↔ a ∼= b

With a system that allows for propositions (intensionally conceived) and
distinguishes them from truth-values, one could also propose a principle
governing truth-values in a way analogous to the above. Of course, Frege
wouldn’t have formulated such a principle. In his system, sentences denote
truth values and the identity symbol can do the job of the biconditional.
Thus, in his system, the truth value of p equals the truth value of q just
in case p = q. But if we use a modern-day predicate logic instead of
a term logic, distinguish propositions from truth values, and allow the
propositional variables ‘p’ and ‘q’ to range over propositions, something
like the following principle governing truth values would be assertible for
a modern-day Fregean (Boolos [1986], 148):

Truth Values:
The truth value of p is identical with the truth value of q iff p is
equivalent to q.

(p◦=q◦) ↔ (p↔q)

Here, and in what follows, the biconditional is not to be construed as an
identity sign.

Frege might have called all of these objects ‘logical objects’, since in
[1884], he thought he had a way of defining them all in terms of a paradigm
logical object, namely, extensions. Let us for the moment use α, β as
metavariables ranging over variables for objects, concepts, or propositions,
ϕ as a metavariable ranging over formulas, and [̌λα ϕ] for the extension
of the (first- or second-level) concept [λα ϕ]. Frege then defined ([1884],
§68) ‘the number of F s’ (#F ), ‘the direction of line a’ (�a ), and ‘the shape
of figure c’ (c̆) as follows:

#F =df [̌λG G ≈ F ]
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�a =df [̌λx x‖a]

c̆ =df [̌λx x ∼= c]

If we ignore the infamous Section 10 of Frege’s Grundgesetze, then the
above definitions suggest the following definition of ‘the truth value of
proposition p’ (p◦), given the principle Truth Values:

p◦ =df [̌λq q ↔ p]

All of these logical objects would thereby have been systematized by:

Basic Law V:
The extension of the concept [λα ϕ] is identical to the extension
of the concept [λα ψ] iff all and only the objects falling under the
concept ϕ fall under the concept ψ.

[̌λα ϕ] = [̌λα ψ] ↔ ∀β([λα ϕ]β ↔ [λα ψ]β)

Since it follows from Basic Law V that for any formula ϕ, ∃x(x = [̌λαϕ])1

the logical objects defined above (#F , �a, c̆, and p◦) would all be well-
defined. Moreover, a Fregean would then suggest that we derive Hume’s
Principle, Directions, Shapes, and Truth Values from equivalence rela-
tions like equinumerosity, parallelism, geometric similarity, and material
equivalence.

Frege’s program was undermined by the inconsistency of Basic Law
V with second-order logic. Recently, there has been a renaissance of
research on consistent Frege-style systems.2 In an important series of
papers, George Boolos also developed systems for reconstructing Frege’s
work. We’ll focus on the work in Boolos [1986], [1987], [1989], and [1993].
Although in [1986] and [1993] Boolos offers reconstructions of Basic Law
V that are consistent with second-order logic, we plan to show that these
systems can be made to follow the pattern of his [1987] paper, and that
once this pattern is recognized, a comparison becomes possible between
the systems Boolos formulated and the ‘object theory’ formulated in Zalta
[1983], [1988], [1993], and [1999]. As we shall see, each of Boolos’ sys-
tems can be grounded in one non-logical axiom in the form of an explicit

1Substitute ϕ for ψ in Basic Law V, derive the right condition by logic alone, from

which the left condition then follows, and existentially generalize on [λα ϕ].
2See Schroeder-Heister [1987], T. Parsons [1987], Bell [1994], Heck [1996], Burgess

[1998], Wehmeier [1999], Goldfarb [2001], and Ferreira & Wehmeier [2002].
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existence assertion. These explicit existence assertions can be directly
compared with the comprehension principle for abstract objects in object
theory. This comparison allows one to evaluate the theories of Fregean
logical objects formulable in the Boolos and object-theoretic frameworks.3

As part of this evaluation, we shall develop a series of new results in object
theory pertaining to logical objects.

1. Boolos’ Systems: Numbers, New V, and New V�

In examining Frege’s work in the Die Grundlagen der Arithmetik , Boolos
arrived at the following insight:

Thus, although a division into two types of entity, concepts
and objects, can be found in the Foundations , it is plain that
Frege uses not one but two instantiation relations, ‘falling un-
der’ (relating some objects to some concepts), and ‘being in’
(relating some concepts to some objects), and that both rela-
tions sometimes obtain reciprocally: the number 1 is an ob-
ject that falls under ‘identical with 1’, a concept that is in the
number 1. (Boolos [1987], p. 3)

Boolos proceeds to salvage the work in the Foundations by introducing the
notion ‘G is in the extension x’ (Gηx) as the second instantiation relation
(‘being in’) mentioned in the above passage. He then develops what he
calls ‘Frege Arithmetic’ by adding the following assertion to second-order
logic:

Numbers:
For every concept F , there is a unique (extension) x which has ‘in’
it all and only those concepts G which are in one-to-one correspon-
dence with F .

∀F∃!x∀G(Gηx ↔ G ≈ F )

3Wright [1983] and Hale [1987] have developed somewhat different method for as-

serting the existence of logical objects, namely, by adding Fregean-style biconditionals

to second-order logic whenever an appropriate equivalence condition on objects or

concepts presents itself. However, in the present paper, we shall be focusing on those

systems which try to reconstruct Frege’s theory of logical objects by adding a sin-

gle additional axiom to second-order logic—one which is sufficient for defining a wide

variety of Fregean logical objects and deriving their governing biconditionals.
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Boolos then goes on to show that the Dedekind/Peano axioms are deriv-
able from this claim, by first deriving Hume’s Principle and then following
Frege’s plan in the Grundlagen and Grundgesetze.4 Boolos notes that the
explicit assertion of the existence of numbers embodied by Numbers is a
way of making clear the commitment implicit in the use of the definite
article in ‘the number of F s’.5

In his papers of [1986] and [1993], Boolos returned to the idea of
salvaging Frege’s work by using biconditionals which are weakenings of
Basic Law V. But as we now plan to show, these other developments
can be recast in the terms Boolos used for the development of Frege
Arithmetic, namely, as explicit existence assertions. To see this, let us
rehearse the definitions and principles Boolos provides, first in [1986] and
then in [1993].

In [1986], Boolos defines the notion of a small concept based on a
‘limitation of size’ conception of of sets. We may paraphrase his definition

4Define #F as the object x which has in it all and only those concepts G which

are equinumerous with F . Then Hume’s Principle is derivable from Numbers. As is

now well-known, the Dedekind/Peano axioms become derivable from Hume’s Principle

using Frege’s techniques. See Frege [1893], Parsons [1965], Wright [1983], and Heck

[1993].
5Boolos says,

In §68 Frege first asserts that F is equinumerous with G iff the extension

of ‘equinumerous with F ’ is the same as that of ‘equinumerous with G’

and then defines the number belonging to the concept F as the extension

of the concept ‘equinumerous with the concept F ’. Since Frege, like

Russell, holds that existence and uniqueness are implicit in the use of

the definite article, he supposes that for any concept F , there is a unique

extension of the concept ‘equinumerous with F ’. Thus, the sentence

Numbers expresses this supposition of uniqueness in the language of Frege

Arithmetic; it is the sole nonlogical assumption utilized by Frege in the

course of the mathematical work done in §§68-83.

([1987], 5-6 = [1998], 186)
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as follows:6

Small(F ) =df F 	≈ V ,

where V is the universal concept [λx x=x]. He then defines the equiva-
lence condition F is (logically) similar to G (F ∼ G) as follows:

F ∼ G =df (Small(F ) ∨ Small(G)) → F ≡ G,

where F ≡ G just means ∀x(Fx ↔ Gx). Now Boolos introduces the
logical object called the subtension of F (∗F ) by adding the following
Fregean biconditional principle to second-order logic:

New V:
The subtension of F is identical to the subtension of G iff F and G
are (logically) similar.

∗F =∗G ↔ F ∼ G

He then derives number theory by first deriving finite set theory (exten-
sionality, separation and adjunction).7

Note that one can reformulate New V in terms of an explicit existence
assertion in the same way that Boolos reformulated Hume’s Principle as
Numbers, using the second ‘instantiation’ relation η, as follows:

6This definition is equivalent to the one Boolos uses, namely, that the universal

concept can’t be put in one-one correspondence with a subconcept of a small concept,

as the following proof of equivalence shows:

(→) Assume F is small under Boolos’ definition, to show F is small in our sense.

So we assume ¬∃G(G ⊆ F & V ≈ G); i.e., ∀G(G ⊆ F → V �≈ G). Since F is a

subconcept of itself, V �≈ F .

(←) Assume F is small under our definition, to show F is small in Boolos’ sense.

So we assume V �≈ F . To show that ∀G(G ⊆ F → V �≈ G), assume that G ⊆ F ,

to show V �≈ G. For reductio, assume V ≈ G. But, it is a corollary to the

Cantor-Schröder-Bernstein theorem in second order logic (see Shapiro [1991],

102-103), that if G ⊆ F & V ≈ G→ V ≈ F . So it follows that V ≈ F , contrary

to hypothesis.

7An object is a ‘set’ whenever it is the subtension of a small concept; ‘x ∈ y’ is

defined to be true whenever ∃F (y = ∗F & Fx); ‘0’ is defined to be subtension of the

concept [λxx �=x] (i.e., 0 = ∗[λxx �=x]); the object ‘z+w’ is defined as the subtension of

the concept [λxx ∈ z ∨ x=w] and it is proved that if z is a set, so is z+w; the concept

of ‘hereditarily finite’ is then defined as [λx∀F (F0&∀z∀w(Fz&Fw→ Fz+w)→ Fx)]

(i.e., as the property of having every property F which is had by 0 and which is had by

z+w whenever z and w have it); it is then proved that all hereditarily finite objects and

their members are (hereditarily finite) sets; and, finally, it is shown that the hereditarily

finite sets validate the axioms of finite set theory.
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Explicit New V:
∀F∃!x∀G(Gηx ↔ G ∼ F )

If Explicit New V were now to replace Numbers in the language Boolos
used for Frege Arithmetic, and we define:

∗F =df ıx∀G(Gηx ↔ G ∼ F ),

then New V is derivable from Explicit New V.8

We may do something similar for the Basic Law V replacement pro-
posed in Boolos [1993]. In this paper (231), Boolos builds upon an idea
of Terence Parsons to develop an alternative to New V. We will call this
alternative New V�. Boolos defines ([1993], 231 = [1998], 234):

Bad(F ) =df F ≈ V ≈ F ,

where F is [λx ¬Fx]. In other words, a good (i.e., non-bad) concept F is
such that either F or its complement fails to be in one-to-one correspon-
dence with the universal concept V . Boolos then essentially defines the
equivalence condition ‘F is (logically) similar� to G’ (F �∼ G):

F
�∼ G =df (Good(F ) ∨ Good(G)) → F ≡ G

Finally Boolos introduces a logical object that we shall call the the sub-
tension� of F by adding the following Fregean biconditional principle to
second-order logic:

New V�:
The subtension� of F = the subtension� of G iff F is (logically)
similar� to G.

�F = �G ↔ F
�∼ G

Boolos then notes that number theory can be derived by defining 0 as
�[λy y 	= y] and successor in either the Zermelo or von Neumann way
([1993], 231 = [1998], 234).

8Note that the definition of ∗F is well-formed because Explicit New V guarantees

the existence and uniqueness of an individual satisfying the condition. From left to

right, let a = ∗A = ∗B, then by the definition of ∗A, we know ∀G(Gηa ↔ A ∼ G).

Since A ∼ A we know Aηa. By the definition of ∗B, ∀G(Gηa ↔ B ∼ G) so since Aηa

then B ∼ A. From right to left, assume A ∼ B and let a = ∗A. By the definition of
∗A, ∀G(Gηa ↔ A ∼ G). Since A ∼ B this is equivalent to ∀G(Gηa ↔ B ∼ G) which

is just the definition of ∗B so ∗A = ∗B.
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It is straightforward to reformulate New V� to explicitly assert the
existence of subtensions�, in the same way that Explicit New V constitutes
the explicit existence assertion underlying New V. The relevant axiom is:

Explicit New V�:
∀F∃!x∀G(Gηx ↔ G

�∼ F )

Again, one can show that New V� is derivable from Explicit New V�.
The trend here is generalizable. Whenever a replacement for Basic

Law V (preserving its form) is proposed, one can reformulate that replace-
ment in terms of an explicit existence assertion using Boolos’ η relation.
In other words, if one has an equivalence relation R on concepts which
can be used to construct an operator %F for which the biconditional
%F = %G ↔ R(F,G) holds, one can show that the following explicit
existence claim is equivalent to the biconditional:9

∀F∃!x∀G(Gηx ↔ R(F,G))

It strikes us that an obvious question to ask is, why not just take these
explicit existence assertions like Explicit New V and Explicit New V� to
the logical limit? That is, why not allow arbitrary conditions ϕ on the
right-hand side of the explicit existence claim, as follows:

Explicit Logical Objects:
∃!x∀G(Gηx ↔ ϕ)

Boolos himself must have considered this question, for he showed that
Explicit Logical Objects is inconsistent with second-order logic. He notes

9To see this, let the principles Biconditional and Explicit be defined as follows:

Biconditional: ∀F∀G(%F = %G↔ R(F,G))

Explicit: ∀F∃!x∀G(Gηx↔ R(F,G))

Then, in second-order logic, (1) Explicit implies Biconditional under the definition

%F =df ıx∀G(Gηx ↔ R(F,G))

and (2) Biconditional implies Explicit under the definition

Fηx =df x = %F

The proof is straightforward. For (1), just generalize the proof of the derivation of New

V from Explicit New V. For (2), let x=%F , for any F . We need to show ∀G(Gη%F ↔
R(F,G)). Substituting in definition of η this becomes ∀G(%G = %F ↔ R(F,G)) which

is just Biconditional. To show x is unique, let y be such that ∀G(y=%G↔ R(F,G)).

Then in particular y = %F ↔ R(F, F ). Since R is an equivalence relation, R(F, F ),

and so y = %F = x.
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that one instance of Explicit Logical Objects is the following, which es-
sentially restates Basic Law V:

Explicit Rule V:
∀F∃!x∀G(Gηx ↔ G ≡ F )

Boolos points out ([1987], 17 = [1998], 198) that this instance leads to a
contradiction when you substitute [λz∃H(Hηz&¬Hz)] (i.e., the property
containing a concept which you don’t fall under) for F . Similarly, Boolos
notes ([1987], 17 = [1998], 198-99) that the following

SuperRussell:
∃!x∀G(Gηx ↔ ∃y(Gy & ¬Gηy))

asserts the existence of an object that has in it all and only those proper-
ties G which fail to be contained in something which falls under G. This
leads to a contradiction too.10

One might think that this is the end of the story—the comprehension
schema Explicit Logical Objects is just too strong. However, as we shall
see in the next section, if you place a minor restriction on comprehension
for properties, one can retain Explicit Logical Objects and show that it
has a wide variety of applications.

2. Object Theory

Suppose we were to keep Explicit Logical Objects, as stated above, but
weaken the comprehension principle over concepts. Instead of full com-
prehension over concepts, i.e.,

∃F∀x(Fx↔ ϕ), where ϕ has no free F s,

let us use a restricted comprehension principle in which ϕ is η-free:

∃F∀x(Fx↔ ϕ), where ϕ has no free F s and is η-free

This restriction is attractive because it preserves many of Frege’s logical
objects; the remainder of this paper will show how, exactly, it preserves
these objects. In this section, we will show that a theory very much like
this has been proposed in research conducted independently of Boolos’
papers.

10Let a be such an object; by property comprehension, [λz z = a] exists; but

[λz z=a]ηa iff not.
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In [1983], Zalta proposed an axiomatic metaphysics that formalized
and systematized E. Mally’s [1912] distinction between two modes of pred-
ication. Mally distinguished between an object’s ‘satisfying’ a property
and an object’s being determined by a property. The formal reconstruc-
tion of Mally’s distinction was used to identify ‘intentional objects’ (such
as fictions), possible worlds, Leibnizian complete individual concepts, and
other abstract objects of interest to the formal ontologist.

Of particular interest here is the elementary version of the system in
[1983], extended so as to include the theory of propositions used in the
modal version of the system. We will call this subsystem Object Theory,
or OT for short. OT is formulated in a second-order language that has
been modified only by the inclusion of two kinds of atomic formulas: Fx
(read either ‘x exemplifies the property F ’ or ‘x falls under the concept
F ’) and xF (read ‘x encodes F ’).11 In addition, OT contains a primitive
theoretical predicate E! (‘being concrete’) whose complement is A! (‘being
abstract’).12 It is axiomatic that concrete objects don’t encode properties.

The proof theory of OT is just second-order logic with the restricted
comprehension principle for concepts we considered above:13

OT Concept Comprehension
∃F∀x(Fx↔ ϕ),

where ϕ has no free F s and has no encoding subformulas.

A version of Explicit Logical Objects is the system’s most fundamental
group of non-logical axioms:

11We’ve simplified here a bit. We may assume that in OT, the exemplification

mode of predication generalizes to n objects exemplifying an n-place relation. So

‘Fnx1, . . . , xn’ is well formed.
12In [1983], Zalta reads ‘E!’ as ‘exists’, but notes (50-52) that the system could be

interpreted somewhat differently. In the present paper, we will read ‘E!’ as ‘concrete’,

and so there is a simple distinction between concrete and abstract objects. We reserve

‘there exists’ for the now standard, Quinean reading of the existential quantifier ‘∃’.
Note that in Zalta’s modal system, the ‘abstract objects’ are necessarily non-concrete,

not simply non-concrete, and ‘ordinary objects’ are defined as possibly concrete.
13In Zalta’s systems, the more general comprehension principle for n-place relations,

n ≥ 0, is used. Indeed, Concept Comprehension is derived as consequence of the

abstraction principle for λ-expressions, namely, [λx1 . . . xn ϕ]y1 . . . yn ↔ ϕy1,...,yn
x1,...,xn .

Since Zalta uses a restriction on the formation of λ-expressions (namely, they may not

contain encoding subformulas), both the explicit comprehension principle for relations

and the derivable 1-place OT Concept Comprehension principle inherit that restriction

when they are derived from λ-abstraction.
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OT Object Comprehension
∃x(A!x & ∀F (xF ↔ ϕ)), where ϕ has no free xs

Finally, in OT, identity is a defined notion for concrete objects, abstract
objects, and concepts.

x=E y =df E!x& E!y & ∀F (Fx↔ Fy)

x=A y =df A!x&A!y & ∀F (xF ↔ yF )

x=y =df x=E y ∨ x=A y

F =G =df ∀x(xF ↔ xG)

Note that the definition of identity for objects has a consequence for
OT Object Comprehension—there can’t be two distinct abstract objects
which encode exactly the properties satisfying ϕ. So each instance of OT
Object Comprehension yields a unique abstract object encoding just the
properties satisfying ϕ. Consequently, the definite description:

ıx(A!x& ∀F (xF ↔ ϕ))

is always well-defined, for any formula ϕ with no free xs.
In short, OT is an extension of second-order logic that provides unre-

stricted object comprehension at the cost of restricting concept compre-
hension. Our interest in this system has two dimensions. First, OT shares
deep similarities with Boolos’ systems. Second, the system demonstrates
that an axiom like Explicit Logical Objects can be consistently added to
a suitably weakened second-order logic.

The most striking similarity between the explicit versions of Boolos’
systems and OT is their use of two instantiation relations. Recall the
quotation from Boolos where he notes that Frege was using two instan-
tiation relations in the Foundations . Where Boolos uses Fx and Fηx to
represent these kinds of predication, OT uses Fx and xF . In fact, the
analogy between Fηx and xF is more than superficial. The paradoxes
of η created by Explicit Logical Objects are exactly the paradoxes of en-
coding that would result from adding OT Object Comprehension without
also restricting concept comprehension.14 For example, compare Boolos’
contradictory instance of Explicit Logical Objects:

∃!x∀F (Fηx↔ F ≡ [λz ∃H(Hηz & ¬Hz)])
14The paradoxes of encoding are presented in more detail in Zalta [1983], 158-159.
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with the following paradox of encoding (Zalta [1983], 158-159):

∃!x(Ax & ∀F (xF ↔ F =[λx ∃G(xG & ¬Gx)]))

Furthermore, compare Boolos’ SuperRussell

∃!x∀F (Fηx↔ ∃y(Fy & ¬Fηy))

with ‘McMichael’s Paradox’ of encoding (Zalta [1983], 159):

∃x(A!x & ∀F (xF ↔ ∃y(F =[λz z=y] & ¬yF )))

Of course, none of these contradictions are derivable in OT when encoding
subformulas are banished from property comprehension conditions. More-
over, the theory is provably consistent, as shown in Zalta [1983] (164-166)
and [1999] (626-7), which are based on models of D. Scott and P. Aczel,
respectively.

The pattern we identified in Boolos’ systems, of grounding abstraction
principles for logical objects in explicit existence claims which are formu-
lated with a second mode of predication, has its natural endpoint in OT.
Working with the same, or at least similar, notions of predication, Boo-
los formulated theories of logical objects with unrestricted comprehension
for relations but restricted comprehension conditions for logical objects,
whereas Zalta independently developed a system with unrestricted com-
prehension for logical objects but restricted comprehension conditions for
relations. In the remaining sections of this paper, we compare these two
ways of developing systems for Fregean logical objects. We first develop
some new results in OT concerning the range of definable logical objects,
and then consider whether those results are obtainable in any of Boolos’
systems.

3. Fregean Logical and Abstract Objects

In this section, we discuss the following kinds of logical object: natural
cardinals, extensions, directions, shapes, and truth values. The material
concerning the latter four kinds of logical objects are presented here as
new results of OT. However, before introducing those results, we first
briefly rehearse the development of number theory in Zalta [1999].
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3.1 Natural Cardinals

In Zalta [1999], the relation of ‘equinumerous with respect to ordinary
objects’ (‘F ≈E G’) is shown to be an equivalence relation on properties.15

Then, ‘the number of ordinary Gs’ (‘#G’) is given a Frege-style definition
as, follows

#G =df ıx(A!x & ∀F (xF ↔ F ≈E G))

Then, natural cardinals are defined as:

NaturalCardinal(x) =df ∃F (x=#F )

A version of Hume’s Principle is derivable from the above definitions.

Hume’s Principle in OT:
#F =#G ↔ F ≈E G

Moreover, with two additional assumptions, the Dedekind/Peano axioms
for number theory are then derived, mostly following Frege’s plan.16 Thus,
no mathematical primitives are needed for the development of this con-
ception of the natural numbers.

3.2 Extensions

Our new results concern extensions, directions, shapes, and truth values.
First we derive a theory of extensions in OT. We begin with the definition
of the equivalence condition ‘F is materially equivalent to G’ in the usual
way:

F ≡ G =df ∀x(Fx↔ Gx)

We then define ‘the extension of G’ as follows:
15In [1999], ‘ordinary’ objects are defined as ‘possibly concrete’, i.e., as �E!x. Now

let u, v range over ordinary objects. Zalta defines:

F ≈E G =df ∃R[∀u(Fu→ ∃!v(Gv &Ruv)) & ∀u(Gu→ ∃!v(Fv & Rvu))]

16See Zalta [1999] for details. The two additional assumptions are: (1) that the

condition which defines Predecessor constitutes a relation, and (2) (the modal claim)

that if (natural number) n numbers the G, then there might have been something

distinct from all of the actual Gs. Note that the system of Zalta [1999] was developed

so as to include a primitive modality, and the axioms of second-order S5 modal logic

were included. This modal reformulation was essential to the proof that every number

has a successor, since the proof required the interplay of the Barcan-formulas with the

modal claim just described.
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Ǧ =df ıx(A!x & ∀F (xF ↔ F ≡ G))

Our earlier discussion established that this description is well-defined.
Using this definition, we can then define the notion of an extension as
any object that is the extension of some concept:

Extension(x) =df ∃F (x = F̌ )

Now, a consistent version of Basic Law V is derivable:17

Basic Law V in OT:
F̌ = Ǧ↔ F ≡ G

The reason this is a consistent version of Law V is that only genuine prop-
erties (i.e., ones without encoding subformulas) are substitutable for F or
G—paradoxical conditions of the kind Boolos discussed (e.g., SuperRus-
sell) do not define genuine properties.

To see that a proper notion of ‘extension’ has been defined here,
we now show that the following principles are derivable: Extensionality,
Empty Extension, Unions, Complements, Intersections, and Comprehen-
sion. First we define membership in an extension in the usual way:

y ∈ x =df ∃G(x=̌G &Gy)

The following abstraction principle for extensions immediately follows:

Lemma: x ∈ Ǧ↔ Gx

From this Lemma, it is easy to prove the following, where the ei are
variables ranging over extensions:18

17For the proof:

(→) Suppose Ǎ = B̌. By the definition of Ǎ, ∀F (̌AF ↔ F ≡ A). Since

Ǎ = B̌ we can substitute to get ∀F (̌BF ↔ F ≡ A). In particular, this implies

B̌B ↔ B ≡ A. Since clearly B̌B it follows that B ≡ A.

(←) Suppose A ≡ B. To show Ǎ = B̌ it suffices to show that ∀F (̌AF ↔ F ≡ B).

By the definition of Ǎ, ∀F (̌AF ↔ F ≡ A). Since A ≡ B it follows that

∀F (̌AF ↔ F ≡ B). �	

18For Extensionality:

Suppose ∀x(x ∈ e1 ↔ x ∈ e2) and e1 and e2 are P̌ and Q̌, respectively. Then,

by the Lemma on extensions, ∀x(Px ↔ Qx), i.e. P ≡ Q. So by Basic Law V,

e1 = e2. �	

For Empty Extension:
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Extensionality: ∀e1∀e2[∀x(x∈e1 ↔ x∈e2) → e1 =e2]

Empty Extension: ∃!e∀x(x 	∈e)

Unions : ∀e1∀e2∃e3∀x(x∈e3 ↔ x∈e1 ∨ x∈e2)

Complements : ∀e1∃e2∀z(z∈e2 ↔ z 	∈e1)

Intersections : ∀e1∀e2∃e3∀x(x∈e3 ↔ x∈e1 & x∈e2)
Let e = [̌λx E!x& ¬E!x] (or the extension of any other empty concept). Then,

by the Lemma on extensions, ∀x(x �∈ e). For uniqueness, suppose there exists

extension e′ = P̌ for some P such that ∀y(y �∈ e′). Then, by the Lemma,

∀x(¬Px). So P ≡ [λz E!x& ¬E!x]. But then by Basic Law V, e = e′. �	

For Unions:

Consider arbitrarily chosen extensions e and e′. Then there are properties P

and Q such that e = P̌ and e′ = Q̌. Consider the property [λz Pz ∨ Qz],

which exists by property abstraction. Call this property H. We show that for

any object x, x ∈ Ȟ iff x ∈ e or x ∈ e′. But this follows by the λ-conversion

principle and the definition of membership. �	

For Complements:

Consider an arbitrarily chose extension e. Then e is the extension of some

concept, say P . But now consider [λy ¬Py], which exists by property compre-

hension. Then [̌λy¬Py] also exists. It is straightforward to show that something

is in this extension iff it fails to be in e.

For Intersection:

Follow the same proof as for Unions, but instead using the property [λzPz&Qz].

Alternatively, use the complement of the union of the complements of e and e′.

For Comprehension:

Let ϕ[z] be any formula without encoding subformulas or definite descriptions

and in which the variable z may or may not be free. Then [λz ϕ] denotes

a property. So [̌λz ϕ] is well-defined and so exists. So by the definition of

membership

x ∈ [̌λz ϕ]↔ [λz ϕ]x,

where x is any object. By λ-conversion, it then follows that:

x ∈ [̌λz ϕ]↔ ϕx
z

So by universally generalizing on x and existentially generalizing on our exten-

sion abstract, it follows that there is a extension that contains as members all

and only those objects that are such that ϕ, i.e.,

∃e∀x(x ∈ e↔ ϕ[x])

�	
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Comprehension: ∃e∀x(x∈e ↔ ϕ[x]),
where ϕ[x] is any formula without encoding subformulas.

Note that Pairs and Adjunction are not straightforwardly derivable—in
each case, a proviso is needed. Consider the following:19

Pairs : ∀x∀y[E!x& E!y → ∃e∀z(z∈e↔ z=E x ∨ z=E y)]

Adjunction: ∀e1∀x[E!x→ ∃e2∀y(y∈e2 ↔ y∈e1 ∨ y=E x)]

The restrictions here are required because properties of the form [λyy=x]
are not guaranteed to exist, given that ‘x=y’ is defined in terms of encod-
ing subformulas. It should be easy to see that the property [λw w=E x∨
w=E y] figures into the proof of Pairs, and the property [λwFw∨w=E y]
(where e1 = F̌ ) figures into the proof of Adjunction. These properties are
guaranteed to exist, by property comprehension.

Note, finally, that the following schema,

Separation: ∀e1∃e2∀x(x∈e2 ↔ x∈e1 & ϕ[x]),
where ϕ[x] is any formula without encoding subformulas.

is easily derivable from Comprehension and Intersection—take the in-
tersection of any given extension with [̌λz ϕ[z]], where ϕ[z] satisfies the
restrictions on comprehension.

3.3 Directions, Shapes, etc.

Next we turn to directions, shapes, and other abstract, logical objects
based on equivalence relations among individuals. We may define direc-
tions and shapes in just the way Frege suggests in [1884] (§68 = p. 79):

�v =df [̌λz z‖v]
19For Pairs:

Consider arbitrarily chosen concrete objects a and b. Consider the property

[λy y=E a ∨ y=E b]. This property exists by property abstraction. Call this

property H. Then there is a extensionˇH. It is straightforward to prove that

something z is inˇH iff z=E a or z=E b. �	

For Adjunction:

Let e be an extension and suppose E!a. Then there is some property, say P ,

such that e = P̌ . Now consider the property [λzPz ∨ z=E a]. Call this property

H. Then it is easy to show that something y is in Ȟ iff y∈e ∨ y=E a. �	
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v̆ =df [̌λz z∼=v]
From these definitions, one may define the associated notions:

Direction(x) =df ∃v(x=�v)

Shape(x) =df ∃v(x= v̆)

Next, it is straightforward to prove the corresponding Fregean bicondi-
tionals:20

Directions in OT:
�u=�v ↔ u‖v
Shapes in OT:
ŭ= v̆ ↔ u∼=v

One can easily see that this generalizes to any equivalence relation R on
objects:

x̃ =df [̌λz zRx]

The corresponding biconditional for the logical object x̃ is:21

ã = b̃↔ aRb

It is of some interest here that although we have followed Frege in defining
directions and shapes as extensions, one might argue that, strictly speak-
ing, directions and shapes should not be reduced to extensions but rather
defined as sui generis logical objects. OT can capture this idea—we may
alternatively define:

�v =df ıx(A!x & ∀F (xF ↔ ∀y([λz z‖v]y → Fy)))

v̆ =df ıx(A!x & ∀F (xF ↔ ∀y([λz z∼=v]y → Fy)))

This would define �v, for example, as the abstract object that encodes
all the properties that are implied by the property being parallel to v.
It is easy to see that the corresponding Fregean biconditionals are still
derivable for these alternative definitions.22

20For the proof, see the more general case, discussed next in the text and proved in

the next footnote.
21For the proof:

We know ã = b̃ iff (by definition of ã, b̃) [̌λz zRa] = [̌λz zRb] iff (by Basic Law

V) [λz zRa] ≡ [λz zRb] iff (by λ-conversion and the fact that R is an equivalence

relation) aRb. �	

22For example, we prove Directions as follows:
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3.4 Truth Values

Truth values have been familiar to philosophers and logicians for so long
that few have been interested in the question of what they are and why
we are justified in assuming that they exist. Frege introduced the two
truth values, The True and The False, as primitive objects. Logicians
ever since have used them to give the semantics of propositional logic,
while mathematicians typically just use the numbers 0 and 1. But truth
values are not numbers, and logicians have never justified the existence
of truth values within the wider context of a theory of logical objects.

By contrast, we may prove that there are truth values, identify The
True and The False as particular truth values and, finally, prove that there
are exactly two truth values. In proving these claims, we shall assume that
the reader has some familiarity with the subtheory of propositions in Zalta
[1983], and elsewhere, which we have incorporated into OT. It is important
to note that this framework is a predicate logic and not a term logic like
Frege’s. Sentences do not denote truth values, but receive recursively
defined truth conditions. Some sentences, however, do qualify as 0-place
terms (namely, the ones which have no encoding subformulas), and these
do denote propositions (intensionally conceived). In particular, the theory
of propositions begins with a comprehension principle for propositions.
Where ‘p’ is a variable ranging over propositions (i.e., 0-place relations),
the following is actually a ‘degenerate’ 0-place sub-schema of Concept
Comprehension in OT:

∃p(p↔ ϕ), where ϕ has no free ps and no encoding subformulas

In addition, there is a definition of proposition identity:

p=q =df [λy p] = [λy q]

In this definition, the identity of p and q is defined in terms of the identity

(→) Let 
a = 
b. Since clearly ∀y([λz z‖a]y → [λz z‖a]y) we know 
a[λz z‖a]. Sub-

stituting 
b for 
a yields 
b[λz z‖a]. By the definition of 
b we know ∀y([λz z‖b]y →
[λz z‖a]y) and in particular [λz z‖b]b → [λz z‖a]b which is equivalent, by λ-

abstraction, to b‖b→ b‖a. Since b‖b, b‖a.
(←) Let a‖b. It suffices to show that for any P , 
aP ↔ 
bP . Suppose 
aP .

Then by the definition of 
a, ∀y([λz z‖a]y → Py) Since a‖b this is equivalent to

∀y([λz z‖b]y→ Py). By the definition of 
b this implies 
bP .
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of certain propositional properties.23 (Recall that identity for properties,
or concepts, has already been defined.) In the expression ‘[λy p]’, since
p is a variable ranging over propositions, the variable ‘y’ bound by the
λ is vacuously bound. For example, ‘[λy Pb]’ might denote the property
being such that Bush is President . Complex properties of this form are
logically governed by λ-abstraction; the following is the relevant general
instance: [λy p]x↔ p.

Although there may be alternative definitions of truth values that will
do the job we want, we prefer the following definition of ‘the truth value
of proposition p’ (p◦):

p◦ =df ıx(A!x& ∀F (xF ↔ ∃q(q ↔ p& F = [λy q])))

This says that the extension of p is the abstract object that encodes all
and only the properties of the form [λy q] which are constructed out of
propositions q materially equivalent to p. To get a more natural sense
of what this definition does, let us extend our notion of encoding so that
objects can encode propositions:

x encodes p =df x[λy p]

Using this extended notion of encoding, we may read our definition of p◦

more simply as follows: the truth value of p is the abstract object that
encodes exactly the propositions materially equivalent to p.24

It is now straightforward to define the notion of a truth value as any
object that is the truth value of some proposition:

T-value(x) =df ∃p(x=p◦)

The Fregean biconditional governing truth values is a consequence of our
work so far:25

23The resulting theory of propositions is consistent with the claim that there are

distinct propositions which are nevertheless materially equivalent. That is, one may

consistently assert the existence of propositions p, q such that both p �= q and p ↔ q.

In modal developments of object theory, the definition of proposition identity becomes

consistent with the claim that there are distinct propositions which are necessarily

equivalent.
24It is for this reason that we do not define p◦ as [̌λy p]. This latter definition would

make the truth value of a proposition an extension containing objects, whereas on

our present definition, the truth of a proposition more like an extension ‘containing’

(encoding) propositions.
25Here is the proof:
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Truth Values in OT:
p◦=q◦ ↔ p↔q

Now the two truth values The True (�) and The False (⊥) are identifiable:

� =df ıx(A!x& ∀F (xF ↔ ∃p(p& F =[λy p])))

⊥ =df ıx(A!x& ∀F (xF ↔ ∃p(¬p& F =[λy p])))

We may prove that these two objects are indeed truth values:26

Theorem: T-value(�) & T-value(⊥)

Finally, we may establish the fundamental theorem governing truth val-
ues, namely, that there are exactly two of them:27

It is a simple lemma to establish that q◦ encodes p iff p ≡ q (exercise). Now

pick arbitrary propositions p1 and q1. (→) Assume p◦1 is identical to q◦1 . Given

the simple lemma and the self-equivalence of p1, it is easy to show that p◦1
encodes p1. So q◦1 encodes p1. So, again, by our simple lemma, it follows that

p1 is materially equivalent to q1. (←) Assume p1 is materially equivalent to q1.

To show that p◦1 is identical to q◦1 , we show they encode the same properties.

(→) Assume p◦1 encodes P . Then there is a proposition, say r1, such that r1 is

materially equivalent to p1 and such that P is identical to being such that r1.

So there is a proposition r (namely r1) such that r is materially equivalent to

q1 and such that P is identical to [λy r]. So, by the definition of q◦1 , it follows

that q◦1 encodes P . (←) By analogous reasoning.

26Here is the proof that � is a truth value:

We want to show that � is identical with the truth value of some proposition. So

pick any arbitrary proposition you please, say p1, and consider the proposition

p1 → p1. Call this proposition p2. Since p2 is a logical truth, it is true. Now to

show that � is identical with p◦2, we need to show that � encodes a property

Q iff p◦2 encodes Q. (→) Assume � encodes Q. Then there is a proposition,

say r1, such that r1 is true and Q is the property being such that r1. Since p2
and r1 are both true, they are materially equivalent. So there is a proposition

r (namely, r1) such that r is materially equivalent to p2 and such that Q is

the property being such that r . So, by the definition of p◦2, it follows that p◦2
encodes Q. (←). Assume that p◦2 encodes Q. So, there is a proposition, say r1,

such that r1 is materially equivalent to p2 and such that Q is being identical

with r1. But since p2 is true, r1 is true. So there is a proposition r (namely,

r1) which is true and such that Q is being such that r . So � encodes Q.

The proof that ⊥ is a truth value is left as an exercise.
27Here is the proof:

Since by our previous theorems we know that � and ⊥ are both truth values, it

suffices to show that they are distinct and that any other truth value is identical

to either � or ⊥. Since it is obvious that they are distinct, we simply prove
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Theorem: ∃x, y[T-value(x) & T-value(y) & x 	=y &
∀z(T-value(z) → z=x ∨ z=y)]

4. Logical Objects in Boolos’ Systems

In his work in [1986], [1989], and [1993], Boolos has shown some of the
strengths of New V and New V� as a ground for set theory. This work
has been refined by Shapiro and Weir [1999], where they consider which
standard axioms of set theory are derivable from New V and which are
not. In this section, we ask to what extent the systems of (Explicit) New
V and New V� can be used to identify other kinds of logical objects.28

More precisely, we will examine whether Boolos’ systems can yield bicon-
ditionals like Hume’s Principle, Directions, and Shapes when the relevant
objects are defined as Frege suggested. We will see that New V and New
V� often identify as ‘large’ or ‘bad’ the concepts that Frege used to define
logical objects.

4.1 Hume’s Principle, New V, and New V�

Shapiro and Weir ([1999], 301) offer the following counterexample to
Hume’s Principle in New V. They note that the property, A, of being
a singleton concept and the property, B, of being a doubleton concept
are both large, and so they are logically similar and therefore have the
same extension. Thus, where 1 is the extension of A, and 2 is the exten-
sion of B, it would follow that 1 = 2. This quick counterexample does
demonstrate a problem that faces New V for the reconstruction of Fregean
number theory. But a more in-depth analysis will offer an insight into the
obstacles that lie in the way of reconstructing numbers and other logical
objects using either New V or New V�.

On our analysis, Hume’s Principle fails in these systems because the

that every truth value is identical to either � or ⊥. So assume that z is a truth

value. So there is some proposition, say p1, such that z = p◦1. Now it is easy to

show that, in general, p→ (p◦ = �) and ¬p→ (p◦ =⊥). So, given that either

p1 or ¬p1, it follows by disjunctive syllogism, that either p◦1 = � or p◦1 =⊥. So

either z=� or z=⊥.

28We do not consider whether Numbers could serve as a basis for a theory of logical

objects because, unlike New V and New V�, it is intended only to make the existence

assertion implicit in Hume’s Principle explicit. Numbers was never intended to provide

a foundation for logical objects generally.
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concept used to define cardinal numbers is ‘large’ and ‘bad’. Remember
that Frege defined the finite cardinal ‘the number of F s’ as the extension of
the higher-order concept being equinumerous with F . Since Boolos’ system
does not contain λ-expressions for higher-order concepts, this Fregean
definition for the finite cardinal can’t be reconstructed. However, Frege
suggested a suitable substitute in [1893], §34. Let us define ‘the number
of F ’s’ as the subtension of the concept being a subtension of a concept
equinumerous to F (QF ):

QF =df [λx ∃G(x=∗G&G≈F )]

We may therefore define:

#F =df
∗QF

Now it is a fundamental fact about the system of New V and New V�

that the following holds:29

[F 	≈ V & F ≈ V & ∃xFx] → QF ≈ V ≈ QF (δ)

where F is the complement of F . In words, if F is a small, nonempty
concept with a large complement then the concept being the subtension
of a concept equinumerous with F is large and bad.

Let’s see how this fact undermines Hume’s Principle. Any singleton
(S) or doubleton (D) concept satisfies the antecedent of (δ). Thus, the
concepts being the subtension of a concept equinumerous with singleton S
(QS) and being the subtension of a concept equinumerous with doubleton D
(QD) are large and bad. But if these concepts are both large and bad then
they are logically similar (QS ∼ QD) and logically similar� (QS

�∼ QD).
But under New V and New V� this means the subtensions of QS and QD

are identical despite the fact that S 	≈ D. But this is a counterexample to
Hume’s Principle which, given the definition of #F as ∗QF , implies that
∗QS = ∗QD ↔ S≈D. So in one sense, Hume’s Principle fails in New V
and New V� because finite cardinals are extensions of concepts that, in
Boolos’ systems, are large and bad.30

Even though Boolos’ approach marks as large and bad concepts (like
QS) that are essential to Frege’s definition of number, it is still quite
astonishing what can be accomplished from New V and New V�. For

29For the proof, see the Appendix.
30This is presumably why Boolos does not use Frege’s own development of arithmetic

in the system of New V.
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example, Boolos has shown [1989] that New V is sufficient for the devel-
opment of Zermelo-Fraenkel set theory without the powerset and infinity
axioms. Here, we have only tried to explain why Frege’s own development
of arithmetic is not available in New V and New V�.

4.2 Directions and Shapes

In both New V and New V�, the provability of the biconditionals Direc-
tions and Shapes depends upon the assumptions one makes about direc-
tions and shapes. In Boolos’s systems, �a would be identified as ∗[λz z‖a]
(New V) or �[λz z‖a] (New V�), and ă would be identified as ∗[λz z∼=a]
(New V) or �[λz z∼=a] (New V�). In New V (New V�), the corresponding
biconditionals are provable only when the concepts [λz z‖a] and [λz z∼=a]
are small (good), for any a. So if it is possible to show—perhaps by
employing some axioms of geometry—that [λz z‖a] and [λz z ∼= a] are
well-behaved in the appropriate way, then New V and New V� imply
the biconditionals. However, without additional geometric axioms, there
is a model of the New V system where the biconditionals do not hold.
Consider Boolos’ model for the New V system ([1986], 150-151) in which
object variables range over natural numbers and concept variables range
over sets of natural numbers. If F denotes a finite set then ∗F denotes
some natural number that encodes this set. If F denotes an infinite set,
then ∗F denotes 0. Now interpret ‖ such that x‖y iff x and y are either
both even or both odd. Then [λz z‖2] and [λz z‖3] are both large so they
have the same subtension, however, ¬(2‖3)—contra Directions.

4.3 Truth Values

In Boolos [1986] (148), Boolos considers adding propositional variables
along with a special axiom p◦ = q◦ ↔ (p ↔ q) to define truth values.
However, if propositional variables are added to the New V system and
degenerate 0-place instances of concept comprehension are allowed, this
biconditional can be proven using the following definition of truth value:

p◦ =df
∗[λz p]

This definition maps all true propositions to the universal concept and all
false propositions to the empty concept. From this definition the bicon-
ditional

p◦=q◦ ↔ (p↔ q)

David J. Anderson and Edward N. Zalta 24

holds in the New V system (and a corresponding version involving subten-
sions� holds in New V�).31 The definition is materially adequate, not only
because it yields the above biconditional, but also because one can prove
that there are truth values, define The True and The False, show they
are truth values, and show that there are exactly two truth values.32 The
above definition, however, does not make truth values sui generis objects
in the way that Frege thought (and most logicians think) of them.

5. Observations

We saw earlier that the nonlogical axioms in Boolos’ systems can be
grounded in the existence assertions Explicit New V and Explicit New
V�. These axioms involve a second mode of predication and provide a
basis of comparison with OT’s comprehension for abstract objects. In
particular, whereas Boolos has unrestricted property comprehension and
restricted object comprehension, OT restricts property comprehension
and leaves object comprehension unrestricted. We asked to what extent
each approach was capable of developing Fregean logical objects such as
extensions, natural cardinals, directions, shapes, and truth values.

A lot of work has been done to reveal the strengths of Boolos’ sys-
tems as a basis for a ‘limitation of size’ set theory. It is from set theory

31For the proof in New V:

(→) Assume p◦ = q◦. By the definition, this amounts to ∗[λyp] =∗ [λyq]. So by

New V, the concepts [λy p] and [λy q] are logically similar, i.e., Small([λy p]) ∨
Small([λyq])→ [λyp] ≡ [λyq]. Case 1. If both concepts are large, then they are

both nonempty and so p and q are both true. Thus, they are equivalent. Case

2. Both concepts are materially equivalent and at least one is small. Subcase

(a). If [λy p] is nonempty, then p is true, so since the concepts are equivalent,

[λy q] is nonempty, and so q is true. Subcase (b). If [λy p] is empty, then p is

false. So, by analogous reasoning, q is false.

(←) If p and q are equivalent, then the concepts are equivalent. So they are

logically similar, and by New V, their subtensions are identical. �	

For New V�:

(→) By the same reasoning as above, one can reach the conclusion that if the

concepts are good, then they are materially equivalent. Note that for any propo-

sition p, the concept [λy p] is always good (because if p is true, the [λy¬p] �≈ V ;

if p is not true, then [λy p] �≈ V ). So the concepts are materially equivalent and

so the propositions are equivalent.

(←) By the same reasoning as in New V. �	

32The True, for example, would be defined as ∗[λz ∀x(x = x)].
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that Boolos can develop arithmetic and other mathematical constructs.
However, because New V and New V� conflate the extensions of ‘bad’
concepts these systems prove unsuitable for defining Fregean natural car-
dinals. The story for other logical objects is similar. For directions and
shapes, additional geometric axioms are necessary to forestall a counter-
model to Directions and Shapes. A simulation of truth values is possible,
although truth values look more like extensions of one-place concepts than
the extensions of zero-place propositions.

Contrast these results with the theory of logical objects in OT. We
saw that natural cardinals have a Fregean definition in a modal extension
of OT and a version of Hume’s Principle is derivable under this definition.
However, there are two caveats. The first is that equinumerosity on con-
cepts must be restricted to ordinary objects, and so the resulting cardinals
count only the ordinary objects falling under a concept, though Hume’s
Principle is derivable and governs this notion of natural cardinal. Second,
the derivation of number theory requires two additional assumptions (see
Zalta [1999]).

A second group of paradigm logical objects, extensions, is definable
and is governed by a provably consistent version of Basic Law V. In addi-
tion some basic set-theoretic principles are shown to hold for extensions.
Because shapes and directions are definable in terms of extensions, their
associated biconditionals are provable. Indeed, for any equivalence rela-
tion on objects, one can define logical objects that correspond to the cells
of the partition and prove the corresponding Fregean biconditional. Fi-
nally, we identified truth values as distinctive logical objects in their own
right. They satisfy the corresponding Fregean biconditional and provably
have the other properties typically associated with truth values.

The inconsistency of Basic Law V with second-order logic shows that
extensions cannot be well-behaved for all concepts (i.e., well-behaved in
the sense that only extensions of materially equivalent concepts are equal).
Most attempts at saving Frege’s work have made extensions well-behaved
in a smaller class of concepts.33 By comparing extensions in OT with
subtensions in Boolos, it is clear that in OT, extensions are well-behaved
for the concepts that are definable without encoding subformulas, while
in Boolos’s systems, subtensions are well-behaved for concepts that are
small or good.

A suitable reconstruction of Frege’s work, we argue, must provide a

33Consider, for example, the systems in Heck [1996] and Wehmeier [1999].
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basis for defining logical objects like the one offered here. Further research
should be done comparing other reconstructions of Fregean logical objects,
as well as comparing the modal versions of these neo-Fregean systems.

Appendix

Here we show the fact about New V and New V� mentioned in the text;
namely that

F 	≈ V & F ≈ V & F nonempty → QF ≈ V ≈ QF (δ)

holds in both New V and New V�.

Proof
Assume the antecedent to show (A) QF ≈ V and (B) QF ≈ V .
(A) Since F is nonempty, let a be such that Fa. Now define a map

g : F → QF by g(x) = ∗F−a+x where F−a+x =df [λz(Fz&z 	= a)∨z=x].
To show QF is large it suffices to verify that g both (1) has range in QF

and (2) is injective. To show (1), supposing Fb, we need to show that
F ≈ F−a+b. This is verified by the bijection h : F → F−a+b defined by

h(x) =
{
b if x = a

x otherwise

For (2) it suffices to show that if Fx, Fx′, and x 	= x′, then g(x) 	= g(x′)
(i.e., ∗F−a+x 	= ∗F−a+x′

). By part (1), F ≈ F−a+x, so since F is small,
F−a+x is also small. Clearly, ¬F−a+x′

x because x 	= x′ and ¬Fx. Thus,
F−a+x and F−a+x′

are not materially equivalent. By New V, since F−a+x

is small and not materially equivalent to F−a+x′
, ∗F−a+x 	= ∗F−a+x′

.
(B) Two cases. In the first case, suppose F has more than one member.

Define a map g : V → QF by g(x) = ∗[λz z=x]. To show QF is large it
suffices to verify that g both (1) has range in QF and (2) is injective. For
(1), since objects in the range of g are subtensions of singleton concepts,
and F is not a singleton, it follows that the range of g is in QF . For (2)
it suffices to show that if x 	= x′ then ∗[λz z=x] 	= ∗[λz z = x′], but this
follows from New V.

In the second case, suppose F has exactly one member, a. Then we
can define a similar map g : F → QF by g(x) = ∗[λz z = a ∨ z= x]. To
show QF is large it suffices to verify that g both (1) has range in QF and
(2) is injective. For (1), since objects in the range of g are subtensions
of doubleton concepts, and F is a singleton, it follows that the range of
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g is in QF . For (2) it suffices to show that if Fx, Fx′, and x 	= x′ then
∗[λz z=a ∨ z=x] 	= ∗[λz z=a ∨ z=x′], but this follows from New V. 
�

Since small concepts are good concepts, the same proof goes through
for New V�.
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