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Abstract

In this paper we describe the theory of definitions developed for
object theory (OT), i.e., the formal, deductive system developed in
the monograph Principia Logico-Metaphysica (excerpted online). OT
exhibits a number of features which call for great care when stating,
and reasoning from, definitions. The features in question include:
(a) identity is not a primitive, (b) there are complex terms (descrip-
tions and λ-expressions) that may fail to denote, (c) all terms, in-
cluding descriptions, are interpreted rigidly, (d) the axiomatization
of an actuality operator includes a contingent axiom (and so the
modal logic allows for reasoning from contingencies), and (e) the
theory of relations in OT is hyperintensional and so one can’t sub-
stitute necessary equivalents in all contexts. The theory of defini-
tions addresses the issues that arise in connection with (a) – (e) and
includes two kinds of definition, namely, definitions by equivalence
and definitions by identity, each of which has a distinctive inferen-
tial role.

*This paper includes a number of (edited) excerpts from different sections of an unpub-
lished manuscript (Zalta m.s.). These have been woven together here to present a more
unified picture of the theory of definitions needed for any system with expressive power
similar to that of the language formulated in the manuscript. I’d like to thank Daniel
Kirchner and Daniel West for comments on the paper that led to improvements.

†I’m grateful to Otto Neumaier and Peter Simons for inviting me to contribute to this
volume of papers dedicated to Edgar Morscher. I first met Edgar during the 1988–1989
academic year, when he came to Stanford to take up a one-year appointment to the Dis-
tinguished Visiting Austrian Chair. He contacted me, I think, because his colleague in
Salzburg, Peter Simons, had reviewed my book of 1983 and both were aware that I had for-
malized some ideas of the Austrian philosopher Ernst Mally. We immediately discovered
other topics of mutual interest and met on a regular basis during that year. I’m grateful to
Edgar for inviting me to Salzburg to lecture in June 1990, since I’ve met many outstanding
philosophers during my trips there. I’ll miss his eager and earnest engagement with ideas
and colleagues.

Edward N. Zalta 2

1 Introduction

The formal, deductive system of ‘object theory’ (OT) has been put for-
ward and applied in a number of papers since 1983. The canonical for-
mulation, however, appears in Principia Logico-Metaphysica (Zalta m.s.),
where it is first expressed in a 2nd-order quantified modal language.
Though OT is also formulated in relational type-theory, we focus here
only on the theory of definitions formulated for 2nd-order OT. The lan-
guage of 2nd-order OT has expressive power beyond that of classical
2nd-order QML; in addition to the modal operator, OT includes (a) a
second mode of predication, i.e., OT includes both atomic exemplifica-
tion formulas of the form Fnx1 . . .xn and encoding formulas of the form
x1 . . .xnF

n, (b) a distinguished unary relation constant E! (that intuitively
denotes the property being concrete), (c) an actuality operator A, (d) com-
plex individual terms, namely, definite descriptions of the form ıxϕ (in-
terpreted rigidly) and (e) complex n-ary relation terms, namely, both (i)
λ-expressions of the form [λx1 . . .xn ϕ] (for n ≥ 0) and (ii) formulas (for
n = 0). The formulas denote propositions, where these are taken to be
0-ary relations. Both descriptions and n-ary relation terms (n ≥ 1) may
fail to denote, and so OT uses a negative free logic for reasoning with
complex terms, though reasoning with primitive (individual and rela-
tion) constants and variables is still classical. Identity is not taken as a
primitive in OT.

To systematize this additional expressive power in the language, OT
adds, to the logic of 2nd-order quantified S5 modal logic, (a) definitions
for existence and identity,1 and (b) axioms governing encoding formulas,
governing the actuality operator, and governing both kinds of complex

1Both existence and identity are defined in terms of the two modes of predication;
see Zalta 2025 for a full discussion. But here is a sketch. For existence, note that we can
define, ‘x exists’ (‘x↓’) as ∃F(Fx), and define, when F is a property (i.e., unary relation),
‘F exists’ (‘F↓’) as ∃x(xF). Similar definitions are given for n-ary relations (n ≥ 2) and for
propositions (n=0).

For identity, α = β is defined for the case when α and β are both individual variables
(say x and y) and for the case when α and β are both n-ary relation variables (say Fn and
Gn), for n ≥ 0. The definition of identity for individuals is given in footnote 16 below. The
definition of relation identity is itself given by cases. Unary relations (i.e., properties) F
and G are identical just in case they are necessarily encoded by the same objects, i.e., F=G
is defined as �∀x(xF ≡ xG). Then n-ary relation identity for n ≥ 2 and n= 0 is defined in
terms of property identity. But we omit these latter definitions since they won’t play a role
in what follows. Again, see Zalta 2025 for a full discussion.
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terms. These definitions and axioms and will be introduced as needed
in what follows. For now, it is important to know that 2nd-order OT has
the following features:

• the modal logic assumes a fixed domain of individuals and a fixed
domain of n-ary relations (n ≥ 0),

• the definitions for relation identity sketched in the 2nd-half of
footnote 1 yield hyperintensional relations for which necessary equiv-
alence doesn’t imply identity, i.e., �∀x1 . . .∀xn(Fnx1 . . .xn ≡ Gnx1 . . .xn)
does not imply F =G, for any n ≥ 1, and �(p ≡ q) does not imply
p=q, when n = 0.

• both kinds of complex terms (descriptions and λ-expressions) may
fail to denote,

• all terms, including definited descriptions, are interpreted rigidly
(semantically, the denotation function isn’t indexed to the prim-
itive possible worlds used in the semantics, but simply assigns a
value, in the relevant domain, to the terms),2 and

• the axiomatization of the actuality operator includes a contingent
axiom (and so, to avoid deriving necessities from contingencies,
the Rule of Necessitation may not be applied to any line of a proof
that depends on a contingency).

With definite descriptions and λ-expressions in the system, individual
constants can be introduced by using a definite description as a definens
and new n-ary relation constants can be introduced by using an n-ary
λ-expression as a definiens.

We adopt the standard view that, in a definition, a new expression,
the definiendum, is introduced by way of a definiens that contains only
primitive expressions or previously defined expressions. In building a
theory of definitions for this system, we shall not regard definitions as
metalinguistic abbreviations of the object language.3 Instead, we shall
regard them as conventions for:

2Definite descriptions ıxϕ are assigned an individual, if there is one, that uniquely
satisfied the formula ϕ at the distinguished actual world.

3In developing the theory of definitions for this system, I found the following works
especially helpful: Frege 1879, §24; Padoa 1900; Frege 1903a, §§55–67, §§139–144, and
§§146–147; Frege 1903b, Part I; Frege 1914, 224–225; Suppes 1957; Mates 1972; Dudman
1973; Belnap 1993; Hodges 2008; Urbaniak & Hämäri 2012; and Gupta 2023. Hodges
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(a) extending the object language with new formulas and terms (often
with the help of new syncategorematic expressions), and

(b) conservatively extending OT’s deductive system with new and safe
axioms.

As such, claims stated in terms of defined notions become genuine philo-
sophical statements of the object language rather than statements of the
metalanguage; indeed, some of the axioms and axiom schemas of OT are
stated in terms of these defined notions.4 We first focus our attention
on how definitions achieve (a). Then we discuss (b) in Sections 4 and 5,
where we carefully characterize the inferential role that such definitions
play within OT’s deductive system.

Further, the inferential role of definitions described below will abide
by two classical criteria for proper definitions: eliminability and non-
creativity (conservativity). I shall not spend any time here discussing
these criteria; they are well-known and are thoroughly discussed in the
literature cited in footnote 3. But see, especially, Hodges 2008 (104), for
noting that the eliminability criterion can be traced back to Pascal 1658
and even to Porphyry [OAC, 43]. As to non-creativity, Frege’s discussion
in 1903a (§§139–144 and and §§146–147) seems to be the starting point
of discussion.

In what follows, I use Greek letters as metavariables: ϕ,ψ, . . . to range
over formulas, τ and σ to range over terms generally, ν to range over
individual variables, and α and β to range over both individual and re-
lation variables indifferently. For simplicity, I forego the exact specifica-
tion of the language via a metadefinition identifying the terms and for-
mulas of the language. It is pretty much what you would expect. Though
I think the reader should be able to infer the precise specification of the
language of OT from the discussion, the manuscript referenced above
(Zalta m.s., hereafter ‘PLM’) includes, in the chapter titled ‘The Lan-
guage’, both a metadefinition with a simultaneous recursive definition

2008 and Urbaniak & Hämäri 2012 provide insightful discussions of the contributions by
Kotarbiński, Łukasiewicz, Leśniewski, Ajdukiewicz and Tarski to the elementary theory of
definitions.

4Daniel Kirchner has observed, personal communication, that an additional reason
for not thinking of definitions as abbreviations is that if they are abbreviations, both the
extensions and the intensions of the terms would be identical. So if we want to allow for
hyperintensionality, we shouldn’t conceive of definitions as mere abbreviations.
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of term and formula, and a separate BNF-style definition (in which the
Greek metavariables abbreviate names of grammatical categories).

2 Two Kinds of Definition

The most important feature of OT’s theory of definitions is that there are
two kinds: definitions-by-equivalence and definitions-by-identity, or more
simply, definitions-by-≡ and definitions-by-=, respectively. Here is an in-
tuitive (but not quite accurate) characterization of the distinction: the
former stipulate a necessary equivalence between formulas (= expres-
sions having truth conditions), whereas the latter stipulate an identity
between terms (= expressions having denotations). A definition-by-≡
has the form:

ϕ ≡df ψ

In the general case, where there are m distinct free variables α1, . . . ,αm
(m ≥ 0) in the definiens and definiendum, a definition-by-≡ has the
form:5

ϕ(α1, . . . ,αm) ≡df ψ(α1, . . . ,αm)

By contrast a definition-by-= has the form:

τ =df σ

provided τ and σ are both terms of the same type (i.e., either both indi-
vidual terms or both n-ary relation terms, for some n). In the general
case, where there are m distinct free variables α1, . . . ,αm (m ≥ 0) in the
definiens and definiendum, a definition-by-= has the form:

τ(α1, . . . ,αm) =df σ (α1, . . . ,αm)

5For simplicity, we shall consider only definitions in which all and only the variables
that occur free in a definiens also occur free in the definiendum. Of course, for some pur-
poses, it may be useful to relax this requirement by allowing the definiendum to contain
free variables that aren’t free in the definiens. Suppes (1957) explains why one can allow
definitions in which variables occur free in the definiendum but not in the definiens; one
can trivially get the variables to match by adding dummy clauses to the definiens. For
example, Suppes notes (1957, 157) that the number-theoretic definition Q(x,y) =df x > 0
can be turned into Q(x,y) =df x > 0 & y =y. But Suppes also nicely explains why allowing
the definiens to contain free variables that aren’t free in the definiendum would be catas-
trophic. See his example (1957, 157) of how to derive a falsehood from a definition such as
R(x) ≡df x+ y = 0.
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provided τ and σ are terms of the same type.
Note that it would be incorrect to distinguish definitions-by-≡ and

definitions-by-= by saying that the former introduce new formulas and
the latter introduce new terms. This oversimplification is undermined
by the fact, in OT, that all and only formulas are 0-ary relation terms,
a fact which has the following consequences. First, the definiendum ϕ
and definiens ψ in a definition-by-≡ are 0-ary relation terms as well as
formulas—so in every case, these definitions introduce new 0-ary rela-
tion terms. Second, the definiendum τ and definiens σ in a definition-
by-= may be formulas if τ and σ are 0-ary relation terms—so in some
cases, such definitions introduce new formulas.

In light of these observations, we emphasize that the distinction be-
tween definitions-by-≡ and definitions-by-= concerns their inferential
role in the deductive system. The inferential role of both kinds of def-
inition has to be carefully formulated and this will be done in Sections 4
and 5 below. For now, we can describe their role pre-theoretically as fol-
lows: (a) a definition-by-≡ implicitly introduces necessary biconditionals
as axioms,6 and (b) a definition-by-= implicitly introduces axioms that
intuitively assert: if the definiens has a denotation, then identity holds
and if the definiens doesn’t denote, then neither does the definiendum,
i.e., formally, such axioms take the form (σ↓ → (τ =σ )) & (¬σ↓ → ¬τ↓),
where σ↓ asserts in the object language that σ exists (and asserts seman-
tically that σ has a denotation). Since necessary biconditionals and nec-
essary conjunctions of conditionals (that aren’t converses of each other)
have very different inferential roles, the inferences one can draw from
the two forms of definition will be very different. Note that if we are
going to formulate the inferential role of definitions-by-= in terms as in-
troducing identity statements, then OT’s language without identity will
need definitions-by-≡ for formulas of the form τ = σ (i.e., formulas such
as x= y and Fn =Gn, for n ≥ 0).7 So OT bootstraps itself into a position

6Strictly speaking, the language of OT uses ¬ (not) and→ (if-then) as the only prim-
itive propositional connectives and so the propositional axioms of OT only govern these
two connectives. So the logic of ≡ has to be derived. Since we state the inferential role of
definitions-by-≡ before the logic of ≡ is derived, we will say, in the first instance, that the
inferential role of ϕ ≡df ψ is to implicitly introduce the conditionals ϕ→ ψ and ψ→ ϕ as
non-contingent axioms; from this, the (modal) logic of OT will guarantee that such defini-
tions yield �(ϕ ≡ ψ) as theorems. We’ll discuss this in more detail in Section 4.

7See footnotes 1 and 16, respectively, for a quick sketch of the definitions-by-≡ for
formulas of the form Fn=Gn and x=y.
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where one may formulate the inferential role of definitions-by-=.
Before we can state the inferential role of the two types of definitions,

it is important to first discuss a number of issues that affect the formula-
tion and interpretation of definitions. The first issue concerns a subtlety
that arises in connection with encoding formulas. In an encoding for-
mula of the form x1 . . .xnF

n (n ≥ 1), the xi are the relata of the relation
Fn and we shall say that that they occur in encoding position in this for-
mula. The presence of free variables in encoding position can give rise to
the Clark/Boolos paradox; one may not assume that arbitrary conditions
ϕ, in which there are free individual variables that occur in encoding
position, can be used to define a property. For example, the expression
[λx ∃F(xF &¬Fx)] (being an x that fails to exemplify a property it encodes),
in which the variable bound by the λ occurs in encoding position in the
matrix ∃F(xF&¬Fx), provably fails to denote on pain of contradiction.8

Consequently, it is provable that ¬[λx∃F(xF&¬Fx)]↓; i.e., it is provable
that being an object that fails to exemplify a property it encodes fails to ex-
ist. More generally, if any of the xi bound by the λ in the expression
[λx1 . . .xn ϕ] occurs in encoding position in ϕ, the system doesn’t assert
that the λ-expression has a denotation.9

So, the subtlety introduced by encoding formulas is that if we intro-
duce a definiendum via a definiens that has one or more free variables
in encoding position, then we have to regard the definiendum as hav-
ing those same free variables in encoding position. Here’s a schematic
example. Suppose one were to introduce a new condition on entities
α1, . . . ,αm by formulating a definition-by-equivalence with the following
form (m ≥ 1):

Notion(α1, . . . ,αm) ≡df ψ(α1, . . . ,αm)

8The Clark/Boolos paradox is this: if the expression [λx ∃F(xF&¬Fx)] were to denote
a property, call it K , then OT’s comprehension principle for abstract objects would assert
the existence of an abstract object that encodes K . Any such object would exemplify K
if and only if it doesn’t. See Clark 1978 and Boolos 1987 for statements of the paradox
independent of each other and independent of the OT formalism.

In previous versions of OT, I’ve constructed the language so that λ-expressions such
as [λx ∃F(xF &¬Fx)] are not well-formed. Now, however, OT allows such expressions to
be well-formed and uses a free logic for complex terms so that such expressions aren’t
automatically assumed to denote relations.

9However, there is an axiom that asserts the conditions under which λ-expressions
of this kind denote. It says, intuitively, that if the relation [λx1 . . .xn ψ] exists and
�∀x1 . . .∀xn(ψ ≡ ϕ), then [λx1 . . .xn ϕ] exists. See the chapter on the axioms of OT in PLM.
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Then, if one or more of the αi is an individual variable occurring in en-
coding position somewhere in in the definiens ψ(α1, . . . ,αm), we must
regard the definiendum Notion(α1, . . . ,αm) similarly, i.e., the αi that oc-
cur in encoding position in ψ are to be regarded as occurring in encoding
position in the definiendum Notion(α1, . . . ,αm).10

Similarly, suppose one introduces a new function term τ by formu-
lating a definition-by-identity such as the following:

τ(α1, . . . ,αm) =df σ (α1, . . . ,αm)

Then, if one or more of the αi in τ is an individual variable that occurs
in encoding position somewhere in σ , we must regard the definiendum
τ similarly, i.e., the αi that occur in encoding position in σ are to be
regarded as occurring in encoding position in the definiendum τ .11

3 Object-Language Variables That Function as
Metavariables

The next issue that arises for understanding the two types of definitions
concerns the fact that, in a free logic, definitions must be formulated
schematically, either by using object language variables and regarding
them as functioning as metavariables or by formulating the definitions
schematically with metavariables. This applies to both free variables
and quantified variables in the definitions. Of course, we will chose to
use object language variables and interpret them as metavariables, since

10Here is a specific example of this convention. Suppose we define “x is a concept of y”
as follows:

ConceptOf (x,y) ≡df ∀F(xF ≡ Fy),

Then we must regard the variable x in ConceptOf (x,y) as occurring in encoding position.
That means that the λ in the expression [λx ConceptOf (x,y)] binds a variable in encoding
position and so the λ-expression isn’t guaranteed to have a denotation.

11Here is a specific example of this convention. Suppose we define “the sum of x and y”
(‘x⊕ y’) as “the abstract object (A!x) that encodes all and only those properties F such that
either x encodes F or y encodes F”, i.e., as follows:

x⊕ y =df ız(A!z&∀F(zF ≡ xF ∨ yF))

Then we must regard the free variables x and y as occurring in encoding position in x⊕ y.
Thus, x and y occur in encoding position in the formula P x⊕y (“x⊕y exemplifies P ”). So the
λ in the expression [λxy P x⊕ y] binds variables in encoding position and isn’t guaranteed
to have a denotation.



9 Definitions in a Hyperintensional Free Logic

that makes the definitions much easier to read. But here are the reasons
why the variables in definitions in a free logic have to be formulated
schematically. We consider free variables first and then bound variables.

3.1 Why Free Variables in Definitions Should Be, or
Should Function as, Metavariables

To see why in systems like OT, free variables in definitions have to be
(understood as) metavariables, let’s first consider a definition-by-≡. Sup-
pose one wanted to define the condition “object x contingently exemplifies
property F” by stipulating that it holds just in case x exemplifies F but
not necessarily. One might expect to see this definition formalized using
object language variables as follows:

ContingentlyExemplifies(x,F) ≡df Fx&¬�Fx (1)

If the variables x and F are interpreted as object language variables, then
we run into the following problem.

On the traditional understanding, a definition such as (1) becomes
available to the deductive system as a biconditional axiom, i.e., as an
axiom where ≡ replaces ≡df in (1). This understanding of definitions
suffices in systems of classical logic in which every term of the language
has a denotation. The classical logic of quantification permits the in-
stantiation of any individual or relation term τ of such a language into
a universally quantified claim of the form ∀αϕ. In such systems, (1) not
only extends the language with new formulas of the form

ContingentlyExemplifies(κ,Π)

(where κ is any individual term and Π any unary relation term), but also
extends the deductive system with necessary axioms such as:

ContingentlyExemplifies(x,F) ≡ (Fx&¬�Fx) (2)

∀x∀F(ContingentlyExemplifies(x,F) ≡ (Fx&¬�Fx)) (3)

In classical systems, every object term κ and every property term Π can
be instantiated, respectively, for ∀x and ∀F in (3) to yield biconditional
theorems stating the necessary and sufficient conditions for the definien-
dum ContingentlyExemplifies(κ,Π).

However, in OT, the complex individual terms (definite descriptions),
complex n-ary (n ≥ 1) relation terms (λ-expressions), and defined terms
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may fail to have a denotation.12 It uses a negative free logic for such terms;
the axiom for universal instantiation is formulated so that a term τ can
be instantiated into a universal claim only on the condition that it has a
denotation.13 A complementary axioms asserts that primitive constants
and variables do have denotations.

Now consider a description like ız(P z & ¬P z), which provably fails
to have a denotation. As noted previously, in OT, the metatheoretical
notion of a term’s having a denotation (i.e, a term’s being significant) is
represented in the object language by the theoretical notion of existence,
which is defined and symbolized by ↓. (The definition need not con-
cern us here; the proof that ız(P z& ¬P z) fails to be significant, i.e., the
proof that ¬ız(P z & ¬P z)↓, goes by way of a reductio.) Let’s abbreviate
the formula P z & ¬P z as ψ1, so that we know ¬ızψ1↓. If definition (1)
implicitly introduces (3) as an axiom, then although the classical logic of
constants would allow us to instantiate the primitive relation constant
P for the universal quantifier ∀F in (3), the negative free logic of non-
denoting terms would not allow us to instantiate the description ızψ1
for the universal quantifier ∀x in (3). Thus, we wouldn’t be able to de-
rive from (3):

ContingentlyExemplifies(ızψ1, P ) ≡ (P ızψ1 &¬�P ızψ1) (4)

Given the classical understanding of definitions on which (1) implicitly
introduces (2) and (3) as axioms, a negative free logic prevents us from
deriving (4). Thus, in a logic where the complex terms may fail to denote,
the notion ContingentlyExemplifies isn’t completely defined: given that

12We don’t include 0-ary relation terms (and thus formulas) in this list, since it is a
theorem of OT that all such terms have a denotation.

13OT uses an axiom that preserves the intent of the standard axiom used in most 2nd-
order negative free logics. The standard axiom is:

∀αϕ→ (∃β(β=τ)→ ϕτα), provided τ is substitutable for α in ϕ

This standard axiom assumes that identity is primitive or defined in the language. But in a
classical 2nd-order quantified modal language (i.e., without encoding formulas) there isn’t
a good way to define F =G except in terms of the condition �∀x(Fx ≡ Gx), which thereby
collapses necessarily equivalent propositions. In some free logics (e.g., Feferman 1995) use
a primitive ↓ (definedness) and revise the above axiom to:

(ϑ) ∀αϕ→ (τ↓→ ϕτα), provided τ is substitutable for α in ϕ

In OT, however, τ↓ is not primitive but rather defined: it is defined in terms of exemplifica-
tion predication when τ is an individual term and in terms of encoding predication when
τ is a relation term. OT then takes (ϑ) as axiomatic.
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ψ1 is P z&¬P z, no biconditional theorem states the necessary and suffi-
cient conditions for the particular formula ContingentlyExemplifies(ızψ1,
Π), for any property term Π.

Moreover, if we can’t derive (4), then we can’t derive:

¬ContingentlyExemplifies(ızψ1, P ) (5)

This would follow from (4) and the fact that in negative free logic, ¬P ızψ1
is a consequence of ¬ızψ1↓.14

Similarly, consider a property term that provably fails to denote, such
as the λ-expression [λx∃F(xF&¬Fx)] that leads to the Clark/Boolos para-
dox. Let’s abbreviate ∃F(xF&¬Fx) asϕ1, so that the the λ-expression can
be referenced as [λx ϕ1]. We know that this expression provably fails to
denote, i.e., that ¬[λx ϕ1]↓ is provable. Then, analogously, if (1) im-
plicitly introduces (3) as an axiom, then although the classical logic of
constants would allow us to instantiate the individual constant a for the
quantifier ∀x in (3), the negative free logic of non-denoting terms would
not allow us to instantiate the [λx ϕ1] for the quantifer ∀F in (3). Thus,
we wouldn’t be able to obtain the following as a theorem:

ContingentlyExemplifies(a, [λxϕ1]) ≡ ([λxϕ]a&¬�[λxϕ1]a) (6)

And without (6), we wouldn’t be able to derive the desired fact that
¬ContingentlyExemplifies(a, [λxϕ1]) from the fact that ¬[λxϕ1]↓.

We can avoid the general problem just described by using metavari-
ables and formulating (1) as a schema. Let κ be a metavariable ranging
over individual terms and Π be a metavariable ranging over unary rela-
tion terms. Then (7) avoids the problems (1) has:

ContingentlyExemplifies(κ,Π) ≡df Πκ&¬�Πκ (7)

A definition schema such as (7) implicitly extends our language with
the new syncategorematic expression ContingentlyExemplifies and new

14If a 2nd-order negative free logic includes both individual and relation terms that
might fail to denote, then it would assert, as an axiom, that for any relation term Πn and
individual terms κ1, . . . ,κn (n ≥ 1):

Πnκ1, . . . ,κn→ (Πn↓&κ1↓& . . . &κn↓)
So as an instance of the contrapositive, we have ¬ızψ1↓→ ¬P ızψ1.

As an aside, it should be noted that in OT, an analogous axiom holds for atomic encoding
formulas: for any relation term Πn and individual terms κ1, . . . ,κn (n ≥ 1):

κ1, . . . ,κnΠ
n→ (Πn↓&κ1↓& . . . &κn↓)

is an axiom.
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formulas of the form ContingentlyExemplifies(κ,Π). But, just as impor-
tantly, (7) will implicitly introduce (the closures of) the instances of the
following schema as new axioms:

ContingentlyExemplifies(κ,Π) ≡ (Πκ&¬�Πκ)

Given such an understanding of definition schemata, (7) yields (4), (5),
and (6) as theorems, since these are all instances of the above bicondi-
tional. Consequently, the use of metavariables in (7) is required and (1),
strictly speaking, doesn’t suffice as a definition. However, since (7) is
more complex and more difficult to read than (1), OT employs the con-
vention: the free variables in (1) function as metavariables, so that (4),
(5), and (6) become instances of the definition.

Now let’s consider definitions-by-=. Though object-language vari-
ables that occur free in a definition-by-= should also function as metavari-
ables, it is not for the reason just outlined. To see why, let’s consider an
unusual example that has some interesting probative features. In OT, it
is a theorem ıx(x= y)↓. This asserts, for an arbitrary object y, that the x
such that x is identical to y exists. Let’s use ıx(x=y) as the definiens for
ιy (“the y”) in the following definition-by-=:

ιy =df ıx(x=y) (8)

For example, ιa (‘the a’) is thereby defined as the individual x identical
to a. (8) is a fine definition given that the definiens has a denotation for
each value assigned to the free variable y. No matter what is assigned to
y, ιy denotes the individual that is identical to y, i.e., denotes y.

Traditionally, (8) would be understood as extending our language
with a host of new complex terms. Though (8) uses the free object-
language variable y, it is standard to assume that (8) would extend our
language with terms of the form ικ, where κ is any term. So all of the
following would be well-formed: ιy , ιızψ1

, ιιy , etc.
Also, traditionally, (8) would be understood as implicitly introducing

the closures of the axiom ιy = ıx(x=y), so that the following is axiomatic:

∀y(ιy = ıx(x=y)) (9)

In a classical logic, in which all terms have denotations, the quantifier
∀y in (9) can be instantiated to any term other than x (since x would get
captured by the variable-binding operator ıx).
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At first glance, this understanding of the inferential role of defini-
tions-by-= would appear to be desirable, for in OT, we have individual
terms that fail to denote; OT’s negative free logic does not permit us
to instantiate empty terms into (9). So where ızψ1 is the example of a
non-denoting description introduced above, we may not instantiate (9)
to infer:

ιızψ1
= ıx(x= ızψ1) (10)

Not only is (10) problematic on the grounds that both terms flanking
the identity sign fail to have a denotation, but in OT it is both provably
false15 and leads to a contradiction.16 Identity statements can’t be true
when one or both of the terms flanking them are empty, unless heroic
measures are taken, something we’ll forego here. So, in a negative free
logic, the classical interpretation of (8) as introducing (9) blocks the in-
troduction of identities like (10) with non-denoting descriptions.

Since (10) is problematic, and our negative free logic prevents us
from inferring it from (9), one might conclude at this point that we should
interpret (8) as introducing (9) and that we need not interpret the object-

15To see this, we have to cite definitions, axioms, and theorems not yet introduced, but
here is an intuitive proof sketch. Assume ¬ızψ1↓. Then choose a variable, say x, that isn’t
free in ızψ1. It follows by a theorem of OT that ¬(x= ızψ1) (no value for x can satisfy the
formula x= ızψ1). Since x isn’t free in our assumption, it follows by GEN that this holds
for any object x, i.e., that ∀x¬(x= ızψ1), i.e., ¬∃x(x= ızψ1).

From this last conclusion, we may infer, by the laws of definite descriptions and the
definition of ↓ that ¬ıx(x= ızψ1)↓, as follows:

Assume, for reductio, that ıx(x = ızψ1)↓. Then by definition of ↓, it follows that
for some property, say P , that P ıx(x = ızψ1). But, then, by Russell’s analysis of
descriptions, it follows a fortiori that that ∃x(x= ızψ1), which contradicts what we
proved above.

From ¬ıx(x = ızψ1)↓, we can again conclude that ¬(ιızψ1 = ıx(x = ızψ1)). Thus, we have a
proof of the negation of (10).

16To see how, first note that in OT, the definition of identity for individuals makes use
of two properties: being ordinary (O!), which is defined as [λx ^E!x] (i.e., being possibly
concrete), and being abstract (A!), which is defined as [λx ¬^E!x] (i.e., being not possibly
concrete). Then the definition of identity for individuals asserts that individuals x and y
are identical just in case they are both ordinary objects and necessarily exemplify the same
properties (i.e.,O!x&O!y&�∀F(Fx ≡ Fy)), or they are both abstract objects that necessarily
encode the same properties (i.e., A!x & A!y & �∀F(xF ≡ yF)). So, given the definition of
identity, (10) will imply, for example, either O!ıx(x= ızψ1) or A!ıx(x= ızψ1). In either case,
an axiom for free logic of the kind discussed in footnote 14 would let us conclude that the
description is significant, i.e., that ıx(x= ızψ1)↓. But this would contradict something we
established in footnote 15, namely that ¬ıx(x= ızψ1)↓.
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language variables in (8) as metavariables. For if we were to interpret (8)
as introducing, for any individual term κ, the axiom schema:

ικ = ıx(x=κ)

then we would have (10) as an instance.
But the conclusion that we shouldn’t interpret the free variables in (8)

as metavariables is too hasty. To see why, consider the provably empty
description ızψ1 introduced earlier. One might wish to allow that ιızψ1

is
a well-formed expression of the language but also have a mechanism for
proving that the definiens ıx(x= ızψ1) and the definiendum ιızψ1

both fail
to have a denotation. Of course, one expedient adopted in other systems
is to disallow instances of (8) unless one can prove that the definiens of
that instance is provably significant. And some systems allow for ‘condi-
tional’ definitions. But these could be considered heroic measures: they
would force us to establish certain existence claims before introducing
definitions and they could potentially leave us with expressions in the
language (such as ιızψ1

) that appear to be perfectly well-formed but are
simply undefined. In Section 5, we’ll focus on the issues that arise for
definitions-by-identity when the definiens fails to denote.

But for now, note that in footnote 15, we saw that ¬ıx(x = ızψ1)↓ is
a consequence of ¬ızψ1↓, but (8) doesn’t allow us to derive ¬ιızψ1

↓ from
¬ıx(x= ızψ1)↓. Intuitively, if the definiens ıx(x= ızψ1) fails to be signifi-
cant, then we should be able to derive that the definiendum ιızψ1

fails to
be significant. So the problem is that (8), under the standard interpreta-
tion of its object-language variables, doesn’t give us a means to conclude
¬ιızψ1

↓ from the theorem ¬ıx(x= ızψ1)↓. So we are in a situation where
the term ιızψ1

appears to be well-formed and we know the claim ιızψ1
↓ is

false (because ıx(x= ızψ1) is empty) but we can’t prove it.
Our solution will be to let the object-language variables in definitions-

by-= function as metavariables but revise our understanding of the in-
ferential role of these definitions. We’ll allow any terms to be substi-
tuted for the free object-language variables so that we have instances
of the definition for every individual term of the language. But the in-
ferential role of the definition, formulated in Section 5 below, will be
introduced by a metarule stipulating that a certain conjunction of con-
ditionals is axiomatic. For the particular instance of (8) we’re now con-
sidering, namely, ιızψ1

=df ıx(x = ızψ1), the metarule will stipulate that
the following is a necessary axiom schema: if ıx(x = ızψ1) exists, then
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ιızψ1
= ıx(x= ızψ1), and if ıx(x= ızψ1) fails to exist, then ιızψ1

fails to exist.

3.2 Why Bound Variables in Definientia Should Be, or
Should Function As, Metavariables

Consider definitions-by-≡ first. Suppose one were to define: x and y
are indiscernible just in case x and y exemplify the same properties. We
might introduce this definition formally as:17

Indiscernible(x,y) ≡df ∀F(Fx ≡ Fy) (11)

In traditional logics, this converts to an axiom asserting:

Indiscernible(x,y) ≡ ∀F(Fx ≡ Fy)

from which it is then derivable, by a theorem schema that asserts the
(necessary) equivalence of alphabetic variants, that:

Indiscernible(x,y) ≡ ∀G(Gx ≡ Gy) (12)

So one doesn’t need the definition:

Indiscernible(x,y) ≡df ∀G(Gx ≡ Gy) (13)

since we can derive (12) from the original definition (11).
Though OT does have the resources to prove that alphabetically-var-

iant formulas such as ∀F(Fx ≡ Fy) and ∀G(Gx ≡ Gy) are (necessarily)
equivalent, quite a number of definitions are developed immediately af-
ter the language of OT is specified and before the proof theory (i.e., ax-
ioms and rules of inference) of OT is specified. So to ensure the under-
standing that any alphabetic variant of a definiens will yield the same
definition with the same inferential role, it is useful (and possibly pru-
dent) to take the bound variable ∀F in (11) to be a metavariable.18 Thus
(13) becomes a perfectly good version of the definition.

17The following example is illustrative only, for in OT, the proper way to introduce this
notion of indiscernibility is to define-by-identity a relation

.≡ as follows:
.≡ =df [λxy ∀F(Fx ≡ Fy)]

Then by adopting infix notation, the formula x
.≡ y becomes a well-formed exemplification

formula. (In the λ-expression used as definiens, none of the variables bound by the λ are
in encoding position in ∀F(Fx ≡ Fy), and so it denotes a relation.) While this is the correct
way to define a relation, it doesn’t give us an example of a definition-by-equivalence.

18It should be noted that in OT, one has to prove not only the (necessary) equivalence of
arbitrary, alphabetically-variant formulas, but also that alphabetically-variant individual
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The foregoing discussion can be easily adapted to explain why we
similarly interpret the bound object language variables in definitions-
by-identity as metavariables. But we leave this for the reader and in-
stead summarize the situation thus far. Our discussion suggests that,
strictly speaking, we should formulate (11) as follows. Where Ω is a
metavariable ranging over primitive unary relation variables, κ1 and κ2
are metavariables representing any distinct individual terms, and κ1 and
κ2 have no free occurrences of Ω:19

Indiscernible(κ1,κ2) ≡df ∀Ω(Ωκ1 ≡Ωκ2) (14)

Since (14) is much more difficult to read and process than (11), it should
now be clear why OT adopts the convention of treating both the free
and bound object language variables in definitions as metavariables. So
this issue, about how to understand the free and bound variables in def-
initions in a free logic with both non-denoting, complex individual and
relation terms, has now been addressed.

4 The Inferential Role of Definitions-by-≡
Though the general case of a definition-by-≡ has the formϕ(α1, . . . ,αn) ≡df
ψ(α1, . . . ,αn), let us abbreviate this more simply as ϕ ≡df ψ and suppose
that this represents any valid instance of the definition, i.e., any instance
having the form ϕ(τ1, . . . , τn) ≡df ψ(τ1, . . . , τn), where τ1, . . . , τn are substi-
tutable for α1, . . . ,αn, respectively, in ψ.

The first bootstrapping device employed by OT concerns the fact that
the equivalence symbol (≡) is not a primitive. Instead ϕ ≡ ψ is defined in
the usual way as the conjunction ϕ→ ψ&ψ→ ϕ, where the conjunction
ϕ & ϕ has been previously defined as ¬(ϕ → ¬ψ). So it isn’t useful to
formulate the inferential role of definitions-by-equivalence in terms of

terms (e.g., ıxFx and ıyFy) and alphabetically-variant relation terms (e.g., [λx ¬Fx] and
[λy¬Fy]) have the same denotation. The proof of these facts does take place once a body of
theorems has been established, and though a proof for specific instances may be developed
on a case-by-case basis, it is clear that we can avoid circularity issues (e.g., requiring facts
about alphabetic-variants to prove facts about alphabetic-variants) by formulating defini-
tions either with metavariables or with object language variable under the assumption that
they are to be interpreted as metavariables.

19The restriction that κ1 and κ2 have no free occurrences of Ω precludes instances of
the definition in which free occurrences of Ω in the κi get captured by the quantifier ∀Ω in
the definiens.
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inferences involving the biconditional until we have proven the tautolo-
gies (governing ≡ and &) that allow us to reason from those bicondition-
als. Consequently, we first specify the inferential role of definitions-by-
equivalent in terms of conditionals, as captured by the following prim-
itive metarule of inference, in which the closures of a formula χ to be
any formula in which χ is immediately prefaced by 0 or more strings of
quantifiers ∀α, modal operators � (and actuality operators A):

Rule of Definition by Equivalence
A definition-by-≡ of the form ϕ ≡df ψ introduces the closures of
ϕ→ ψ and ψ→ ϕ as necessary axioms.

So, to take an example, reconsider definition (1):

ContingentlyExemplifies(x,F) ≡df Fx&¬�Fx

By the Rule of Definition by Equivalence, (1) introduces all of the fol-
lowing converse pairs of conditionals (plus others) as axioms:

• ContingentlyExemplifies(x,F) → Fx&¬�Fx
Fx&¬�Fx → ContingentlyExemplifies(x,F)

• ∀F∀x(ContingentlyExemplifies(x,F) → Fx&¬�Fx)
∀F∀x(Fx&¬�Fx → ContingentlyExemplifies(x,F))

• �(ContingentlyExemplifies(x,F) → Fx&¬�Fx)
�(Fx&¬�Fx → ContingentlyExemplifies(x,F))

• A(ContingentlyExemplifies(x,F) → Fx&¬�Fx)
A(Fx&¬�Fx → ContingentlyExemplifies(x,F))

• �∀F∀x(ContingentlyExemplifies(x,F) → Fx&¬�Fx)
�∀F∀x(Fx&¬�Fx → ContingentlyExemplifies(x,F))

• etc.

Once the tautologies governing & and ≡ are derived in OT, one can then
derive, from the first of the above pairs of conditionals, the biconditional
claims intuitively implied by a definition-by-equivalence. And using the
logic of ∀, �, and A, one can derive quantified, modal, and actualized
biconditionals from the remaining pairs of conditionals listed above.

The Rule of Definition by Equivalence thus preserves the traditional
understanding of this type of definition. And, in doing so, it preserves
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hyperintensionality in OT’s theory of relations. OT’s theory of relations
includes the following definitions for relation identity, which are given
by cases. For the case of unary relations F and G:

F=G ≡df �∀x(xF ≡ xG) (15)

For the case of n-ary relations generally, where n ≥ 2:

F=G ≡df ∀y1 . . .∀yn−1([λx Fxy1 . . . yn−1]=[λx Gxy1 . . . yn−1] &
[λx Fy1xy2 . . . yn−1]=[λx Gy1xy2 . . . yn−1] & . . . &
[λx Fy1 . . . yn−1x]=[λx Gy1 . . . yn−1x]) (16)

Intuitively, this tells us that if each of the n ways of plugging any given
n−1 objects into the same argument positions of F and G results in iden-
tical properties, then F and G are identical. For the case of 0-ary rela-
tions, i.e., propositions:

p=q ≡df [λx p]=[λx q] (17)

Definitions (16) and (17) reduce relation and proposition identity to def-
inition (15) of property identity.

Intuitively, relations as have two extensions in OT. One extension,
the exemplification extension, may vary from world to world, while a
second extension, the encoding extension, does not. (15) tells us that
properties (= unary relations) that necessarily have the same the same
encoding extension are identical. But in OT, properties that necessar-
ily have the same exemplification extension, i.e., properties such that
�∀x(Fx ≡ Gx), need not have the same encoding extension and so need
not be identical. Consider the property being a barber who shaves all
and only those who don’t shave themselves, which we may represent as
[λx Bx & ∀y(Sxy ≡ ¬Syy)]. This property is necessarily empty. And so
is the property being a colored and colorless dog, i.e., [λx Cx&¬Cx&Dx].
Though one can prove:

�∀z([λx Bx&∀y(Sxy ≡ ¬Syy)]z ≡ [λxCx&¬Cx&Dx]z)

it doesn’t follow in OT that:

[λx Bx&∀y(Sxy ≡ ¬Syy)] = [λxCx&¬Cx&Dx]

This hyperintensionality extends, by definitions (16) and (17), to n-ary
relations for n ≥ 2 and for n = 0. For example, in the latter case, the
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easily-provable fact that �(p ≡ ¬¬p) doesn’t entail the fact that p=¬¬p.
One may consistently assert, for some or all propositions q that q,¬¬q.

The Rule of Definition by Equivalence preserves these facts. Given
the inferential role it stipulates for definitions-by-equivalence, one may
not validly substitute necessarily equivalent formulas within λ-expres-
sions. For example, given �∀x(ϕ ≡ ψ), one may not infer [λx ψ]a from
[λxϕ]a.

Before we turn to the inferential role of definitions-by-identity, it is
worth pointing out how one can formulate definitions-by-equivalence
so as to make sure that if an empty term fills one of the argument places
in the definiendum, the resulting definiendum is provably false. As a
purely illustrative example, suppose one stipulated that a property is
conditionally necessary for an object just in case the object necessarily ex-
emplifies the property whenever it exemplifies the property. Then we
would formalize this definition as:

CondNecFor(F,x) ≡df Fx→ �Fx (18)

Given that the variables function as metavariables, then the following
would be a perfectly good instance of the definition, where P is a prop-
erty constant and ızψ1 is again the definite description introduced above
that is provably empty:

CondNecFor(P , ızψ1) ≡df P ızψ1→ �P ızψ1 (19)

So the Rule of Definition by Equivalence tells us that, given (19), the
following claim (among others) is axiomatic:

CondNecFor(P , ızψ1) ≡ P ızψ1→ �P ızψ1 (20)

Now since we can prove ¬ızψ1↓, it follows by negative free logic that
¬P ızψ1. This in turns lets us prove the right-side condition of (20), by
failure of the antecedent. Hence, by logic alone, one can use (20) to estab-
lish CondNecFor(P , ızψ1). But intuitively, the garbage in, garbage out prin-
ciple suggests that, in cases like this, our definition should allow us to
infer that the definiendum fails to hold, i.e., that ¬CondNecFor(P , ızψ1).

To achieve this, one simply has to reformulate (18) as follows:

CondNecFor(F,x) ≡df x↓& (Fx→ �Fx) (18′)

Thus, (19) is no longer an instance, but instead we have:
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CondNecFor(P , ızψ1) ≡df ızψ1↓& (P ızψ1→ �P ızψ1)

We can not then invoke the Rule of Definition by Equivalence to estab-
lish CondNecFor(P , ızψ1) since we can prove the negation of the first con-
junct of the definiens. Instead, given the Rule, it becomes provable that
¬CondNecFor(P , ızψ1)

However, we’re not quite done, for consider a (provably) non-denoting
λ-expression such as the one leading to the Clark/Boolos paradox, namely
[λx∃F(xF&¬Fx)]. Again, abbreviate this as [λxϕ1], so that it is provable
that ¬[λx ϕ1]↓. Now consider the following instance of (18′), where a is
an individual constant:

CondNecFor([λxϕ1], a) ≡df a↓& ([λxϕ1]a→ �[λxϕ1]a)

Then the Rule of Definition by Equivalence tells us that the following is
axiomatic:

CondNecFor([λxϕ1], a) ≡ a↓& ([λxϕ1]a→ �[λxϕ1]a) (21)

But one can still prove that CondNecFor([λxϕ1], a), contrary to intuition:
the first conjunct of right-side condition of (21), namely, a↓, is an axiom
(given a is a primitive constant), and the second conjunct of the right-
side condition of (21), namely, [λx ϕ1]a→ �[λx ϕ1]a is still provable by
failure of the antecedent (given that ¬[λx ϕ1]↓, our negative free logic
yields ¬[λxϕ1]a).

So, the way to formulate definitions-by-equivalence when the defi-
niens doesn’t imply the significance of the terms substitutable for the
free variables is to make sure that, for every such free variable, there is
a conjunct asserting existence. Thus, (18) and (18′) are both properly
formulated as:

CondNecFor(F,x) ≡df F↓& x↓& (Fx→ �Fx) (18′′)

This rules out the problematic instances, and lets us preserve the idea
that if you put garbage in (i.e., instantiate to empty terms), then you can
prove there is garbage out (i.e., prove that the resulting definiendum is
false).

To prepare for the next section, note that the definitions of x=y and
F =G in OT are definitions-by-equivalence. Now that we have a good
grasp of the inferential role of such definitions, we may start to prove
facts about identity. For example, it should be easy to see that from the
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definition of property identity (15), one can prove that identity for prop-
erties is reflexive. For by logic alone we know xF ≡ xF. So by GEN,
∀x(xF ≡ xF). And by the Rule of Necessitation, �∀x(xF ≡ xF). But the
Rule of Definition by Equivalence tells us that, if we replace G by F in
(15), then it is axiomatic that F=F ≡ �∀x(xF ≡ xF). Hence F=F, and so
by GEN, this holds generally for all properties. This theorem, plus the
axiom of OT asserting that in any context, one may substitute identicals,
yields that identity for properties is symmetric and transitive. Analo-
gous results can be obtained from the definition of identity for individu-
als, and the definitions of identity for n-ary relations, for n ≥ 2 and n=0.
With these facts in hand, we can now formulate the inferential role of
definitions-by-identity.

5 The Inferential Role of Definitions-by-=

The presence of modal operators, rigid definite descriptions, and empty
terms presents challenges for any theory of definition-by-identity. In
subsection 5.1, we lay out the problems, and in subsection 5.2, formulate
an inferential role for definitions-by-identity.

5.1 Problems for the Classical Theory

5.1.1 The Problem of Modality

In a classical, non-modal, first-order predicate calculus with identity, but
without definite descriptions, the classical theory of definitions provides
a method for introducing a new individual constant, say δ, into the sys-
tem. The method is to use a definition-by-equivalence, as follows. When
∃!xϕ (i.e., there is a unique x such that ϕ) is provable for some formula
ϕ in which x is the only free variable, one may introduce, by definition,
a new individual constant, say δ, to designate the object satisfying ϕ, as
follows:

(a) δ=x ≡df ϕ

(cf. Suppes 1957, 159–60; Gupta 2023, Section 2.4). If δ↓ is defined as
∃y(δ=y), one can prove that δ↓ from (a) and the fact that ∃!xϕ.20 More-

20The definition licenses the axiom:

(ϑ) ∀x(δ=x ≡ ϕ),
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over, the definition (also correctly) allows one to eliminate δ from any
formula in which it subsequently occurs.21

But this method of introducing new individual constants would be
disastrous for OT, given its modal logic and theory of identity implies
identity for individuals is necessary, i.e., x=y → �(x=y). To see the po-
tential disaster, consider the following example, in which we may sup-
pose that the following two claims are provable as theorems:

(b) ∃!xϕ

(c) ^¬∃xϕ

Since (b) is a theorem, the classical theory would allow one to stipulate
definition (a). Definition (a) would, in OT, allow one to take the (closures
of) the biconditional δ=x ≡ ϕ as axioms. So, for example, one would be
able to take the following as axioms:

(d) ∀x(δ=x ≡ ϕ)

(e) ∀x�(δ=x ≡ ϕ)

But these would allow one to derive�∃xϕ,22 which contradicts (c). Clear-
ly, if well-formed definitions introduce contradictions, then something

since this is a universal closure of the equivalence δ=x ≡ ϕ. Since ∃!xϕ is a theorem, let b
be such an object, so that we know both ϕbx and ∀y(ϕ

y
x → y = b). Instantiating (ϑ) to b, it

follows that δ=b ≡ ϕbx . Since we know ϕbx , it follows that δ=b and, by symmetry, But then
generalizing on b, it follows that ∃y(δ=y). Hence δ↓.

21To see this, we show thatψδx (i.e., any formulaψ in which δ has been substituted for all
the free occurrences of x) is equivalent to ∃!xϕ & ∃x(ϕ&ψ). (→) Assume ψδx . Since we’ve
just seen that the definition of δ implies δ↓, we can conclude δ = δ ≡ ϕδx by instantiating
δ into ∀x(δ= x ≡ ϕ) (a universal claim licensed by definition (a) in the text). And we can
independently infer δ=δ by instantiating δ into ∀x(x=x), which is obtained by GEN from
the fact that identity is reflexive. Hence, ϕδx . Conjoining what we know, we have ϕδx &ψδx .
Hence, by ∃I, ∃x(ϕ&ψ). But, by hypothesis, ∃!xϕ is a theorem. Hence, ∃!xϕ&∃x(ϕ&ψ).

(←) Assume ∃!xϕ&∃x(ϕ&ψ), to show ψδx . Let a be a witness to the first conjunct and let
b be a witness to the second conjunct, so that we know both:

(ζ) ϕax &∀y(ϕ
y
x → y=a)

(ξ) ϕbx &ψbx
Then by the first conjunct of (ζ) and the definition of δ, it follows that δ=a. It follows from
this and the second conjunct of (ζ) that ∀y(ϕ

y
x → y =δ). But this and the first conjunct of

(ξ) imply b=δ. So we may substitute δ for b in the second conjunct of (ξ) to conclude ψδx .
22To see why, suppose b is some witness to (b), so that we know ϕbx and ∀y(ϕ

y
x → y=b),

by the definition of the uniqueness quantifier ∃!xϕ. Then by (d) it follows that:

(ϑ) δ=b ≡ ϕbx
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has gone wrong.
One might suggest here that in order to use (a) as a definition in OT,

we have to require more than just ` ∃!xϕ. Instead, the suggestion goes,
the condition ` �∃!xϕ is required. Such a condition would block the ex-
ample we’ve been discussing since (c) couldn’t be a theorem if ` �∃!xϕ.
But this suggestion for preserving the classical theory doesn’t work. We
can see why, at least intuitively, if we temporarily speak in the familiar
idiom of semantically-primitive possible worlds. Suppose it were a the-
orem that �∃!xϕ and suppose there were just two possible worlds, wα

(the actual world) and w1, and two distinct objects a and b such that a
is uniquely ϕ at wα and b is uniquely ϕ at w1. In this modal situation,
an equivalence licensed by definition (a), namely δ= a ≡ ϕax, would fail
to be necessary. Since the terms of OT are rigid, the definition would in-
troduce δ as a rigid designator of a, since a is uniquely ϕ at wα . So δ=a
would be true at w1, since δ rigidly denotes a. But ϕax would be false at
w1 since, by hypothesis, b is uniquely ϕ at w1. Hence, the equivalence
δ=a ≡ ϕax would fail to be true at w1. So the universalized modal equiv-
alence (e), which is licensed by definition (a), can’t be true, since it has
false instances.

But another suggestion along these lines presents itself, namely, that
definition (a) becomes legitimate if we require that ∃!x�ϕ, instead of
�∃!xϕ, be a theorem. Unfortunately, this suggestion fails as well. That’s
because ∃!x�ϕ can be true while ∃!xϕ is not. Intuitively, from the fact
that there is exactly one thing which is ϕ at every possible world, it
doesn’t follow that there is exactly one thing which is in fact ϕ. Sup-
pose there were just two things a and b, and just two worlds wα and w1,
and that a exemplifies P at both wα and w1, and that b exemplifies P
only at wα . Then, in that modal situation, at wα , there is exactly one
object (namely a) that exemplifies P at every world, i.e., ∃!x�P x. But it

and by (e) it follows that:

(ξ) �(δ=b ≡ ϕbx )

Now by the reasoning in footnote 20, definition (a) implies δ↓. Hence we can instantiate
the necessity of identity (a theorem mentioned above) to infer:

(ζ) δ=b→ �δ=b

So we can establish ϕbx → �ϕbx by a hypothetical syllogism chain, as follows: ϕbx → δ= b,
by (ϑ); δ=b→ �δ=b, by (ζ); and �δ=b→ �ϕbx , by (ξ) and the modal theorem �(ψ ≡ χ)→
(�ψ ≡ �χ). Having thus established that ϕbx → �ϕbx , then since we know ϕbx , it follows that
�ϕbx . Hence, by ∃I, ∃x�ϕ. So by the Buridan formula, �∃xϕ, which contradicts (c).
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is not the case, at wα , that there is exactly one thing that exemplifies P ,
since both a and b exemplify P there. Thus, given only that ` ∃!x�ϕ, we
can’t define δ by saying δ = x ≡df ϕ, since ` ∃!x�ϕ doesn’t guarantee
` ∃!xϕ.

By now, it may be apparent that if one wants to stipulate δ=x ≡df ϕ
in a modal context, the conditions ` ∃!x�ϕ and ` ∃!xϕ are both required.
But we shall not adapt the classical theory of definitions by introducing
new individual constants in this way. Instead, we shall take advantage
of the fact that definite descriptions are part of the language of OT, inter-
preted rigidly. We may then introduce a new individual constant when
we know that ` ıxϕ↓ and x is the sole variable that occurs free in ϕ. For
then, we may use the following definition-by-identity:

(a′) δ =df ıxϕ

This introduces the rigidly-designating constant δ by way of a signif-
icant, rigidly-designating description. It blocks the examples that were
problematic for the classical theory because (a′) doesn’t license the equiv-
alence δ=x ≡ ϕ as axiomatic. Instead, as we’ll see in the next subsection,
(a′) will imply the identity δ= ıxϕ when it is known, by proof or by hy-
pothesis, that ıxϕ↓. And we’ll see that one need not require that there
be a proof of ıxϕ↓ to introduce (a′)—the inferential role of definitions by
identity will implicitly introduce axioms that assert both (a) if ıxϕ↓, then
δ= ıxϕ, and (b) if ¬ıxϕ↓, then ¬δ↓. So we shall defer further discussion
of the inferential role of (a′) until Section 5.2.

However, two further observations are in order. The first is that OT
has an analogous procedure for introducing a new relation constant, ex-
cept that relation constants are to be introduced in by λ-expressions in-
stead of by definite descriptions. A definition-by-identity would take the
following form, where Π is a new n-ary relation constant (n ≥ 1) and, for
the moment, we assume that [λx1 . . .xn ϕ] is a λ-expression with no free
variables and for which ` [λx1 . . .xn ϕ]↓:

Π =df [λx1 . . .xn ϕ]

For example, using the distinguished relation constant E! as the property
being concrete, we can formalize the definitions mentioned in footnote 16
and introduce the properties being ordinary (O!) and being abstract object
(A!) as follows:

O! =df [λx^E!x]
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A! =df [λx¬^E!x]

These definitions introduce new unary relation constants. In OT, both of
the definiens denote properties. Both properties have an exemplification
extension that varies from world to world. And both have an encoding
extension among the abstract objects that encode them, as given by OT’s
comprehension principle for abstract objects.

The second observation is that the foregoing remarks about the def-
inition of new individual and relation constants have to be generalized
in two ways: (a) we need to consider the case in which the definiens may
fail to denote, and (b) we need to consider the case where there are free
variables in the definiens and definiendum. These cases give rise to new
and interesting issues, to which we now turn.

5.1.2 The Problem of Empty Terms in Defined Operations

Should one allow definitions-by-identity for which the definiens fails to
denote? If so, what have we defined and what is the inferential role
of such a definition? To keep these questions simple, let’s temporarily
suppose there are no free variables in the definiens and definiendum.
So consider two definitions of the form τ =df σ , where ψ1 is again used
to abbreviate P z & ¬P z and ϕ1 is again used to abbreviate the formula
∃F(xF&¬Fx):

e =df ızψ1 (22)

T =df [λxϕ1] (23)

Neither definiens has a denotation and, as we’ve previously noted, in OT
one can prove both ¬ızψ1↓ and ¬[λx ϕ1]↓. So, if the inferential role of a
definition by identity were to implicitly introduce identity statements as
axioms, then we would surely want to avoid the above definitions, since
a negative free logic should also imply that e= ızψ1 and T = [λy ϕ1] are
false if even one term flanking the identity sign fails to denote.

But suppose we formulate the inferential role of a definition-by-iden-
tity differently, so that such definitions implicitly introduce axioms that
assert both (a) that the identity holds when the definiens denotes and (b)
that the definiendum fails to denote when the definiens fails to denote.
Then definitions like the (22) and (23) are just harmless. When we for-
mulate the Rule of Definition by Identity in Section 5.2, it will assert that
(22) and (23) implicitly introduce the following axioms, respectively:

Edward N. Zalta 26

(ızψ1↓→ e= ızψ1) & (¬ızψ1↓→ ¬e↓) (24)

([λxϕ1]↓→ T =[λxϕ1]) & (¬[λxϕ1]↓→ ¬T ↓) (25)

Clearly, the theorems that ¬ızψ1↓ and ¬[λxϕ1]↓ respectively trigger the
second conjuncts of (24) and (25) and so the only effect of allowing defi-
nitions such as (22) and (23) is to let us additionally prove, as theorems,
that ¬e↓ and ¬T ↓. In a negative free logic, such claims would seem de-
sirable.

With this in mind, we can now turn to the more interesting (and
classically puzzling) case of definitions-by-identity in which there are
corresponding free variables in the definiendum and definiens. Given
the general form of definitions-by-identity, as described in Section 2, the
ones with free variables take the following form, where α1, . . . ,αm (m ≥ 1)
occur free:

τ(α1, . . . ,αm) =df σ (α1, . . . ,αm)

In a system that allows empty terms, one may not suppose that the infer-
ential role of such definitions is to introduce (the closures of) axioms as-
serting the identity of the definiendum and definiens. The simple prob-
lem that arises is most easily seen if we consider a ‘classical’ theory such
as the theory of real numbers. Let’s suppose, only for illustrative pur-
poses, that this theory has been formulated in the language and logic
of OT.23 In real number theory, mathematicians want to define division,
i.e., x/y, in a way that ignores the case where y is 0, so as to avoid or
ignore terms like 3/0, 3/(π −π), 3/(3/0), etc. So, they might offer a con-
ditional definition (cf. Suppes 1957, 165–169):

If (it is a theorem that) y , 0, then x/y =df ız(x=y · z)

But if this definition is supposed to conservatively extend real number
theory with new expressions and axioms, this it is a somewhat awkward
way of doing so, for the question of eliminability arises. What is the
status of terms like ‘3/0’? Are they part of the language or not? How

23OT doesn’t include the primitives needed to formulate real number theory and, in-
deed, doesn’t include any mathematical primitives. But Nodelman & Zalta (forthcoming)
show that one can derive 2nd-order Peano Arithmetic in OT. And Simpson 1999 [2009]
describes a known way of using 2nd-order Peano Arithmetic to reconstruct real number
theory, though in his reconstruction, the real numbers are not individuals. In any case, OT
doesn’t officially include the primitive notions and axioms of real number theory or any
other mathematical theory.
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could they be part of the language of real number if the logic isn’t free?
If they are not part of the language, then how does one specify the ex-
panded language of real number theory (i.e., the one represented by the
definition) so as to include terms of the form x/y only when y , 0? (Any
general specification of the language would typically allow terms such as
3/0, 3/(π −π), 3/(3/0), etc., to be well-formed.) It is not so easy to spec-
ify the language to include those terms only if there is a proof that their
denominator is not identical to 0, since one typically specifies the proof
system after specifying the language. One could perhaps, as a heroic
way out, specify a sequence of language and proof system pairs, so that
at each pair in the sequence, the proof system of that pair is used to
specify the language of the next pair. But this hardly seems like a good
solution to the problem of defining division.

What is needed is a way to state the definition in a completely gen-
eral way so that (a) it doesn’t yield identities in which one of the terms
involves a division by 0, and (b) it gives one the ability to prove that such
facts as ¬(3/0)↓, ¬(3/(π −π))↓, ¬(3/(3/0))↓, etc. We’ll see in Section 5.2
how the Rule of Definition by Identity solves this problem. This solution
starts by admitting that real number theory is most naturally expressed
in a (free) logic that allows for complex terms that fail to have a denota-
tion, such as 3/0, 3/(π −π), 3/(3/0), etc.

5.2 The Metarule for Definitions-by-Identity

As with definitions-by-equivalence, the inferential role in OT of defi-
nitions-by-identity is specified in the form of a metarule. To simplify
the presentation, consider a definition-by-identity in which the definiens
and definiendum have two free variables, α1 and α2. So the definition
has the form τ(α1,α2) =df σ (α1,α2). Now consider any terms τ1 and τ2
that are of the same type as, and are substitutable for, α1 and α2, re-
spectively, in σ (α1,α2). Then where τ(τ1, τ2) and σ (τ1, τ2) are the result
of substituting the τi for all the free occurrences of the αi in σ (α1,α2)
and τ(α1,α2), respectively, we can formulate the Rule of Definition by
Identity as follows:

Rule of Definition by Identity (Two-Free Variables)
Whenever τ1 and τ2 are any terms substitutable, respectively, for
α1 and α2 in σ (α1,α2), then a definition of the form τ(α1,α2) =df
σ (α1,α2) introduces (the closures of) the following axiom schema:
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(σ (τ1, τ2)↓→ τ(τ1, τ2)=σ (τ1, τ2)) & (¬σ (τ1, τ2)↓→ ¬τ(τ1, τ2)↓)

To see this rule in action, consider the definition of division in real num-
ber theory. If we let τ1 be x and τ2 be y, so that σ (τ1, τ2) is ız(x = y · z)
and τ(τ1, τ2) is x/y, then the Rule of Definition by Identity specifies that
the definition x/y =df ız(x = y · z) would introduce the (closures of the)
axiom:

(ız(x=y · z)↓→ x/y= ız(x=y · z)) & (¬ız(x=y · z)↓→ ¬(x/y)↓)

So, in the case where τ1 is x and τ2 is 0, the axiom would be:

(ız(x=0 · z)↓→ x/0= ız(x=0 · z)) & (¬ız(x=0 · z)↓→ ¬(x/0)↓)

Since the antecedent of the second conjunct is a theorem of real number
theory (for arbitrary x, there is no unique object z such that x= 0 · z),24

it follows that ¬(x/0)↓, and so by GEN, ∀x¬(x/0)↓ is a theorem. And
similarly when τ2 is π−π. Moreover, in the case where τ2 is 3/0, one can
show that ¬(x/(3/0))↓, for any x, since in this case, the rule asserts that
the following is axiomatic:

(ız(x=(3/0) · z)↓→ x/(3/0)= ız(x=(3/0) · z)) &
(¬ız(x=(3/0) · z)↓→ ¬(x/(3/0))↓)

Since ¬(3/0)↓, (3/0) · z is provably empty, for any z.25 So x = (3/0) · z is
always false, for any x, implying thereby that ¬ız(x = (3/0) · z)↓. Thus,
the rule yields ¬(x/(3/0))↓, for any x.

This shows that the Rule of Definition by Identity handles the def-
inition of division in real number theory in a general way—it extends
the language with new terms of the form κ/κ′, for arbitrary individual
terms κ and κ′; it asserts that the definition yields identities when the
definiens is significant; and it allows us to prove that the definiendum is
empty when the definiens is empty.

24Even when x=0, there is no unique real number z such that 0=0·z. Every real number
satisfies this formula.

25For reductio, suppose ((3/0) · z))↓. Then by the axioms for multiplication, (3/0) · z =
3z/0. But by the previous case we examined in the text, we saw that ¬(x/0)↓, for any x, and
so ¬(3z/0)↓. Hence, ¬((3/0) · z = 3z/0), by the contrapositive of a theorem that asserts that
if an identity is true, then the terms flanking the identity denote. Contradiction. Thus,
¬((3/0) · z)↓. Alternatively, just assume that the formulation of real number theory under
consideration allows for empty complex terms, so that multiplication is axiomatized in
such a way that the term κ ·κ′ is empty if either κ or κ′ is empty.
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We can also verify that the Rule of Definition by Identity correctly
handles the case of a non-denoting description (ızψ1) in the example
definition-by-= (8) introduced earlier. The Rule then asserts that the
inferential role of the definition ιızψ1

=df ıx(x = ızψ1) is to implicitly in-
troduce the closures of the following axioms:

(ıx(x= ızψ1)↓→ ιızψ1
= ıx(x= ızψ1)) & (¬ıx(x= ızψ1)↓→ ¬ιızψ1

↓)

Since ¬ızψ1↓ is provable, so is ¬ıx(x= ızψ1)↓, which triggers the second
conjunct, thereby allowing one to infer ¬ιızψ1

↓. So we can prove that the
definiendum fails to denote when the definiens fails to denote. In OT,
then, one can reason secure in the knowledge that no true exemplifica-
tion formula, encoding formula, or identity formula will have ιızψ1

as one
of the relata in the formula.

Since we have now sufficiently motivated the Rule of Definition by
Identity for two free variables, we leave it to the reader to formulate the
general form of the Rule for m free variables, for m ≥ 0. When m = 0,
the Rule of Definition by Identity stipulates that definitions (22) and
(23) implicitly introduce the axioms (24) and (25), respectively. And
when m,0, the general form of the Rule for m free variables preserves a
classical understanding of the inferential role of term-forming operators
(i.e., function terms). We can rest assured that term-forming operators
introduced into our language by definition are logically well-behaved if
their definientia are significant when applied to arguments that match
the type of the free variables.

Before we turn to our concluding section, there is one subtlety to
discuss; it concerns the question of refining the Rule further should one
believe that the garbage in, garbage out principle is an absolute value.
Some might see the following case as a problem. Suppose we introduce
the negation of an n-ary relation F (n ≥ 0), written F, as being objects
z1, . . . , zn that fail to exemplify F, i.e.,

F =df [λz1 . . . zn ¬Fz1 . . . zn] (26)

Now consider an instance of this definition when we substitute the unary
property term [λx ∃F(xF &¬Fx)] for F (which is functioning as a meta-
variable). To keep the notation simple, let’s again abbreviate the formula
∃F(xF&¬Fx) as ϕ1. Then as an instance of (26) we have:

[λxϕ1] =df [λz¬[λxϕ1]z] (27)
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But recall that the expression [λxϕ1] provably fails to denote (since oth-
erwise the Clark/Boolos paradox results). So by negative free logic, one
can infer ¬[λx ϕ1]κ, for any individual term κ you please, since the
formula [λx ϕ1]κ is false when one of its terms fails to denote. But
in the latest developments of OT, the definiens [λz ¬[λx ϕ1]z] denotes
a property even though the embedded λ-expression [λx ϕ1] is empty.
Intuitively, the property [λz ¬[λx ϕ1]z] denotes (some arbitrarily cho-
sen, hyperintensional) property in the domain of properties that has
exemplification conditions specified by the definition of truth for the
formula ¬[λx ϕ1]z. The definition of truth for a free logic will imply
that everything in the domain of individuals satisfies the open formula
¬[λx ϕ1]z, since it is provable that nothing in the domain of individuals
satisfies the open formula [λx ϕ1]z, i.e., it is provable that no z is such
that [λx ∃F(xF & ¬Fx)]z, since the λ-expression fails to denote. Hence,
the definiens of (27), i.e., [λz ¬[λx ϕ1]z], denotes a universal property,
and so the Rule of Definition by Identity will imply that it is axiomatic
that [λxϕ1] is identical to that property.

So, [λxϕ1] is a case of what we might call an impractical definiendum.
It has a denotation but its definiens, as specified by definition (27), is a
term that denotes even though its embedded term [λx ϕ1], which is its
argument given definition (26), fails to denote. It should be clear, from
the foregoing discussion, that the presence of terms like [λz ¬[λx ϕ1]z]
don’t cause problems. Since it has a denotation, β-Conversion implies:

[λz¬[λxϕ1]z]y ≡ ¬[λxϕ1]y

But for the term [λxϕ1], β-Conversion implies only:

[λxϕ1]↓→ ([λxϕ1]y ≡ ϕ1
y
x)

i.e.,

[λxϕ1]↓→ ([λxϕ1]y ≡ ∃F(yF&¬Fy))

The antecedent to this claim is never triggered, since [λx ϕ1] provably
fails to denote. So we can’t conclude from the fact that there are objects
y such that ∃F(yF & ¬Fy) that [λx ϕ1]y. The latter would, contrary to
fact, imply that [λxϕ1] denotes.

Since we already have terms, such as [λz¬[λxϕ1]z], that denote even
though they have a non-denoting subterm, we may as well allow them to
be definientia so as to introduce impractical definienda. So I’ve chosen
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to forego further refinement of the Rule of Definition by Identity in the
attempt to have it yield an axiom from which one can derive ¬[λxϕ1]↓
as a theorem. I don’t regard the preservation of the garbage in, garbage
out principle as an absolute value. OT is a system that lives with im-
practical terms and lives with such facts as that [λz ¬[λx ¬ϕ1]z] denotes
a universal property. This term, and other impractical relation terms,
have perfectly well-defined exemplification conditions and are logically
well-behaved in derivations.26

6 Some Final Considerations

There are other subtleties in connection with definitions in a hyperin-
tensional free logic. These are:

• One may introduce a definition-by-identity, say τ =df σ , for which
the proof that the definiens denotes (i.e., the proof of σ↓) rests on
a contingent axiom or a contingent theorem. But in that case, any
derivation (i.e., from the axiom implicitly introduced by the defini-
tion as prescribed in the Rule of Definition by Identity) that makes
use of σ↓ will similarly depend on the contingent axiom or theo-
rem needed for the proof of σ↓. Thus, the Rule of Necessitation
can’t be applied to the result of such derivations.

• New 0-ary relation terms can be introduced either by a definition-
by-equivalence or by a definition-by-identity. Which definition
one chooses to use depends on the inferential role that one wants
the definiendum to have. For example, one might stipulate q0 =df
∀p(p→ p) and thereby appeal to the identity q0 = ∀p(p→ p). This
would allow one to substitute q0 = ∀p(p→ p) in any context. But if
one stipulated instead q0 ≡df ∀p(p→ p), then given the hyperinten-

26There are also impractical individual terms in OT as well. For example, consider the
definition:

ay =df ıx(A!x&∀F(xF ≡ Fy))

and consider the instance of the definition in which ızψ1 has been substituted for y:

aızψ1 =df ıx(A!x&∀F(xF ≡ Fızψ1))

Here, the definiens has a denotation even though ızψ1 fails to denote: since Fızψ1 is false
for every F, the definiens denotes the abstract object that encodes no properties! So aızψ1
is well-defined, but impractical.
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sionality of relations, one may not infer the identity q0 = ∀p(p→ p)
from the necessarily equivalence �(q0 ≡ ∀p(p→ p)).

• The axiom of OT’s negative free logic asserting that constants and
variables have denotations, has to be formulated carefully. If empty
definientia are used to introduce empty definienda in a definition-
by-identity, then one must make sure that the axiom in question
asserts only that primitive constants (and variables) denote. That
way, the defined constant a can be introduced by the definition
a =df ıx(P x&¬P x) without worrying that the relevant axiom of neg-
ative free logic will then assert that it has a denotation.

Although these subtleties raise interesting issues, we need not discuss
them further here. It is sufficient to have seen how to define the infer-
ential roles of definitions-by-equivalence and definitions-by-identity for
a system of hyperintensional, second-order, modal, negative free logic
(without identity) with an actuality operator governed by a contingent
axiom and which includes a second kind of atomic formula and the
added expressive power of definite descriptions and λ-expressions.
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